В чем измеряется полоса пропускания. Полоса пропускания и пропускная способность

Количество информации, передаваемой по каналу в единицу времени, называют скоростью передачи информации .

Скорость передачи информации по каналам связи оценивается числом бит информации, передаваемых к ее получателю в течение одной секунды (бит/ с ).

Заметим, что на первых этапах развития электросвязи каждое изменение информационного параметра несущего сигнала давало получателю один бит информации и скорость передачи оценивалась в бодах (например, она использовалась для оценки скорости передачи телеграфных данных, в которых каждый «элементарный» сигнал переносил один бит информации). Сегодня же скорость передачи оценивают в бит/сек , так как каждое изменение информационного параметра сигнала современных средств передачи данных может переносить информацию в несколько бит.

Если от источника В по каналу связи передается s символов в единицу времени, а среднее количество информации на один символ равно H(B) , то скорость передачи информации: С = s H(B).

В случае цифровых сигналов (при условии их равновероятности и независимости) максимум энтропии для источника В с числом символов алфавита m определяется формулой H(B) max = log 2 m .

Максимально возможную скорость передачи информации называют пропускнойспособностью канала связи. Она определяться величиной

G= C max = s log 2 m .

Переменные формулы пропускной способности зависят от ряда физических характеристик линии связи, мощности источника сообщений и шумов в канале связи.

Пропускная способность определяется не только физическими характеристики проводящей среды (симметричные, коаксиальные или волоконно-оптические кабели, витая пара и др.), но и спектром передаваемых сигналов. К числу наиболее важных физических характеристик линий связи относят затухание и полосу пропускания .

Параметры линий связи обычно оценивают применительно к сигналам синусоидальной формы. Если подать на один конец линии связи (не имеющей усилителей) синусоидальный сигнал фиксированной частоты и амплитуды, то на другом конце мы получим ослабленный сигнал, т.е. имеющий меньшую амплитуду.

Затухание характеризует уменьшение амплитуды или мощности сигнала при прохождении по линии связи сигнала определенной частоты или диапазона частот. Для проводных кабелей измеряется в децибелах на метр и вычисляется по формуле:

А=10 lg 10 P вых /Р вх,

где P вых и Р вх - соответственно мощность сигнала на входе и выходе линии в 1 м.

Затухание зависит от частоты сигнала. На рис. 1.13 показана типичная форма амплитудно-частотной характеристики, характеризующей затухание сигналов разной частоты. Чем ниже модуль затухания, тем более качественная линия связи (логарифм числа меньше 1 всегда отрицательное число).

Затухание -важнейший параметр для линий связи в вычислительных сетях, причем стандарты устанавливают стандартные значения величины затухания для различных типов кабелей, применяемых при прокладке вычислительных сетей. Так, кабель в виде витой пары 5 категории для внутренней проводки должен иметь затухание не ниже -23,6 дБ, а 6 категории – не ниже 20,6 на частоте 100 мГц при длине линии 100 м. Типичные значения величины затухания кабелей на основе оптоволокна: от 0,15 до 3 дБ на 1000 м.

Полоса пропускания – непрерывный диапазон частот, для каждой из которых отношение амплитуды выходного сигнала к амплитуде входного не меньше некоторой величины. Часто это отношение берут равным 0,5 (см. рис. 1.13). Измеряется в герцах (Гц). Разность значений крайних частот диапазона называют шириной полосы пропускания .

Фактически, полоса пропускания – это интервал частот, используемый данным каналом связи для передачи сигналов. Для различных расчетов важно знать максимальное значение частоты из данной полосы (n m), поскольку именно ей определяется возможная скорость передачи информации по каналу.

Передатчики сигналов, посылающие сигналы в линию связи (например, адаптер или модем) характеризуются мощностью . Уровень мощности сигнала определяется в децибелах на 1 мВт по формуле (такую единицу мощности обозначают- дБм):

p=10 lgP (дБм), где Р- мощность в мВт.

Важной характеристикой проводных линий связи (например, для коаксиального кабеля) является волновое сопротивление . Это полное (комплексное) сопротивление, которое встречает распространяющаяся по кабелю электромагнитная волна определенной частоты. Измеряется в омах. Для снижения затухания надо чтобы выходное волновое сопротивление передатчика было примерно равно волновому сопротивлению линии связи.


Рис.1.13. Амплитудно- частотная характеристика канала связи

Известно, что сигнал любой формы можно получить, просуммировав несколько сигналов синусоидальной формы с разной частотой и амплитудой. Набор частот, которые надо просуммировать, чтобы получить данный сигнал, называют спектром сигнала. Если какие-то частоты из спектра сильно затухают, то это отражается на форме сигнала. Очевидно, качество передачи сигналов существенно зависит от полосы пропускания. Так, согласно стандартам для качественной передачи телефонных разговоров линия связи должна иметь полосу пропускания не менее 3400 Гц.

Существует связь между полосой пропускания и максимальной пропускной способностью, которую установил К. Шеннон:

G =F log 2 (1 + P c /P ш) бит/сек, где

G – максимальная пропускная способность, F – ширина полосы пропускания в Гц, P с – мощность сигнала, Р ш – мощность шума.

Определение мощности сигнала и шума достаточно сложная задача. Однако существует другая формула, полученная Найквистом для случая дискретных сигналов, которую можно применить, когда известно число состояний информационного параметра:

G =2 F log 2 М (бит/сек),

где F – ширина полосы пропускания в Гц, М – число возможных состояний информационного параметра. Из этой формулы следует, что при М=2 (т.е. когда каждое изменение параметра сигнала несет один бит информации) пропускная способность равна удвоенному значению полосы пропускания.

При влиянии помех (шумов) на передаваемые символы некоторые из них могут искажаться. Тогда, с учетом ранее приведенных формул для энтропии, количество получаемой информации и, соответственно, пропускная способность канала связи уменьшатся.

Для случая передачи равновероятных цифровых символов и одинаковых вероятностях замены при передаче значений 1(0) на ложные 0(1) максимальная пропускная способность C макс = s×=s×, где P ош –вероятность ошибки.

График, иллюстрирующий форму зависимости отношения C макс /s (т.е. количества передаваемой информации на символ) от Р ош, представлен на рис.1.14.


Рис.1.14. Зависимость пропускной способности от ошибок в канале связи

Когда появляется новый проект, черты которого еще неясно вырисовываются в ближайшем будущем, не исключена возможность, что в конечном итоге может оказаться необходимым изъять из обращения старый привычный осциллограф и заменить его новым с более широкой полосой пропускания. На обращение к руководству компании разработчики проекта получают ответ: «Хорошо, только скажите, что вам нужно, но не тратьте больше, чем нужно». Основным фактором, определяющим стоимость осциллографов, является их полоса пропускания; поэтому очень важно знать, какая же полоса пропускания требуется на самом деле.
Те, кто определенное время работал в этой области, знают старую установку, что необходимая полоса пропускания осциллографа должна быть по крайней мере в три раза шире полосы частот сигнала, подлежащего измерению. Или, поскольку полоса пропускания и время нарастания переходной характеристики связаны обратно пропорциональной зависимостью, время нарастания переходной характеристики осциллографа должно быть меньше 1/3 времени нарастания измеряемого сигнала. В заметках по применению, написанных автором этой статьи в 70-80-х годах, рекомендовалось именно такое соотношение. Это было на самом деле справедливо в те добрые старые времена, когда большинство осциллографов имело гауссову частотную характеристику. А также гауссову форму переходной характеристики, обеспечивающую высокую скорость перепадов сигнала во временной области.
Хорошей новостью на сегодняшний день является то, что большинство современных широкополосных осциллографов, работающих в реальном времени, имеют очень крутой срез амплитудно-частотной характеристики (АЧХ), более близкий к характеристикам идеально прямоугольного фильтра, чем к гауссовой. Как будет показано далее, это означает, что необходимый запас по полосе пропускания осциллографа относительно максимальной частоты в спектре измеряемого сигнала составляет только 40% (соотношение полосы пропускания осциллографа и полосы частот сигнала лежит в пределах 1,4:1).
Прежде всего необходимо обсудить вопрос о характеристиках сигнала, которые предстоит измерять, и результаты, которые надеются при этом получить. В качестве примера можно привести самый высокоскоростной сигнал во вновь разрабатываемой линии последовательной передачи данных со скоростью передачи 1,5 Гбит/с. Если передаваемый сигнал представляет чередование единиц и нулей, он будет иметь идеально прямоугольную форму с основной частотой 750 МГц.
Но не только основная частота сигнала определяет необходимую полосу пропускания осциллографа. Время перехода сигнала из одного состояния в другое (длительность фронта и среза) - вот что имеет значение. Если имеется чисто синусоидальный сигнал с частотой 750 МГц, то эта частота и будет максимальной (и единственной) в его спектральном составе. Но типичные сигналы передачи цифровых данных содержат более высокие частоты. Стоит закрыть глаза и мысленно перенестись назад в то время, когда в классической аудитории профессор монотонно читал лекции о преобразовании Фурье. Но раз уж это сделано, не следует засыпать и не следует дать себя отпугнуть от прочтения остальной части этой статьи. Автор не собирается углубляться в теорию линейных систем. Нужно только вспомнить, что все сложные сигналы (в том числе прямоугольные, случайные и буквально любые) могут быть представлены суммой ряда гармонических составляющих с частотами, кратными основной частоте.
Для сигнала прямоугольной формы доминирующими в его составе являются нечетные гармоники с частотами в три, пять и т. д. раз выше основной частоты. Ключом к пониманию соотношения между шириной полосы частот сигнала и временем нарастания может служить следующее утверждение: чем больше гармоник, тем меньше время нарастания (длительность фронта) и спада (длительность среза). Если осциллограф имеет недостаточно широкую полосу пропускания, он будет подавлять более высокие гармоники, в результате чего измеренное осциллографом время нарастания сигнала окажется больше, чем на самом деле имеет измеряемый сигнал.

Могут возразить, что если точность измерения длительности фронта и среза удовлетворяет пользователя, то нет смысла заботиться о расширении полосы пропускания. Однако это не так, поскольку ширина полосы пропускания влияет не только на точность измерения длительностей фронта и среза, но и на множество других параметров, которые могут представлять интерес. Так, замедление скорости нарастания сигнала ведет к закрытию глазка глазковой диаграммы (см. рисунок 2). Если исследуемый сигнал имеет значительный выброс или затухание, недостаточно широкая полоса пропускания осциллографа может подавить эти артефакты, и они не будут замечены. Для реальных сигналов передачи данных, представляющих смесь единиц и нулей, недостаточно широкая полоса пропускания осциллографа приведет к появлению помех, вызванных эффектом межсимвольной интерференции (МСИ). Рисунок 1 дает простое объяснение механизма возникновения этих помех вследствие ограничения полосы пропускания. Однополюсная (первого порядка) RC-цепь с постоянной времени t=RC имеет переходную характеристику во временной области, показанную на рис. 1А. Если отдельно взятый импульс, представляющий «единицу» в потоке последовательных данных, проходит через фильтр с такой характеристикой, то он приобретает форму, показанную на рисунке 1В. При этом некоторая часть энергии сигнала отдельно взятого импульса, представляющего «единицу», распространяется на временной интервал, отведенный для следующего импульса (заштрихованная область), почему этот эффект и называется межсимвольной интерференцией. Рисунок 1С иллюстрирует эффект межсимвольной интерференции при случайном сочетании единиц и нулей в потоке последовательных данных.

Рисунок 1 - Межсимвольная интерференция (МСИ)
Рисунок 2 иллюстрирует отчетливо выраженный эффект, который имеет место в осциллографе с ограниченной полосой пропускания и проявляется при исследовании реального высокоскоростного потока данных. На рисунках 2А и 2В показаны сигнал реального потока данных и соответствующая ему глазковая диаграмма так, как они отображаются осциллографом с достаточно широкой полосой пропускания. На рисунках 2С и 2D показаны те же осциллограммы, полученные при простом ограничении полосы частот осциллографа. МСИ вызывает сдвиг момента пересечения порогового уровня для любого перепада сигнала данных; величина этого сдвига зависит от состава предшествующих данных. Это создает джиттер, который проявляется в горизонтальном рассеянии точек пересечения глазка.


Рисунок 2 - влияние полосы пропускания осциллографа на измерение параметров сигнала передачи данных.
Теперь следует сместить акценты и обсудить разницу между гауссовой и максимально плоской амплитудно-частотными характеристиками (АЧХ) осциллографа. В качестве отступления полезно напомнить немного истории, чтобы пояснить как в осциллографах появилась гауссова АЧХ. В золотые времена аналоговых осциллографов для возбуждения отклоняющих пластин электронно-лучевой трубки и перемещения луча от крайнего верхнего до крайнего нижнего положения были нужны очень большие сигналы. Это требовало нескольких каскадов усиления вертикального канала. При соединении большого числа усилительных каскадов с любой формой их индивидуальных АЧХ результирующая АЧХ стремилась к гауссовой.

Инженерам гауссова характеристика понравилась тем, что она обеспечивала самое короткое из возможных время установления и отсутствие выброса за фронтом (как все хорошие рыночники, производители осциллографов умели правильно использовать положительное свойство, чтобы обратить его в определенное достоинство). В те дни, когда разработчики занимались проектированием широкополосных (по определениям того времени) аналоговых осциллографов, они были вынуждены тратить много времени, стараясь выжать из усилителей самую широкую полосу пропускания и самое короткое время нарастания без ущерба для истинно гауссовой характеристики, которая рассматривалась как одно из важных достоинств осциллографа.
Гауссова характеристика имеет два существенных недостатка, которые можно увидеть, если обратиться к рисунку 3. Видно, что выше частоты среза (точка на уровне минус 3 дБ) крутизна спадания характеристики мала. Это нежелательно для систем с дискретизацией, каковыми являются современные цифровые осциллографы (а каких только осциллографов сегодня нет). Любые составляющие сигнала с частотой выше частоты Найквиста (1/2 частоты дискретизации) создают эффект наложения (aliasing). Во избежание этого приходится понижать частоту среза АЧХ, чтобы увеличить подавление высокочастотных составляющих сигнала.


Рисунок 3 - Частотные характеристики гауссова фильтра
С другой стороны, спад гауссовой характеристики начинается много ниже частоты среза (точка на уровне минус 3 дБ). Это вызывает ненужное ослабление важных частотных составляющих сигнала.
Другой крайностью является фильтр с прямоугольной характеристикой, как показано на рисунке 4. Идеальная прямоугольная характеристика не создает затухания на частотах ниже частоты среза и имеет бесконечное затухание выше частоты среза. Импульсная характеристика фильтра с идеально прямоугольной частотной характеристикой осциллирует на бесконечном интервале времени (см. рисунок 4); поскольку импульсная характеристика такого фильтра имеет бесконечную протяженность, его невозможно реализовать ни в аналоговом, ни в цифровом виде. Цифровой фильтр с идеально прямоугольной характеристикой потребовал бы бесконечного числа отводов и имел бы бесконечное время установления.


Рисунок 4 - Характеристики идеально прямоугольного фильтра
Большинство современных широкополосных цифровых осциллографов имеют АЧХ, которая представляет компромисс между гауссовой и идеально прямоугольной характеристикой, обычно ближе к прямоугольной чем к гауссовой, по указанным причинам. Такая характеристика называется максимально плоской.

Теперь можно вернуться к начатой теме о том, как вся эта теория позволяет решить вопрос, насколько широкая полоса пропускания требуется от осциллографа. Здесь имеются хорошие новости. Было показано, как максимально плоская, близкая к прямоугольной, частотная характеристика современных осциллографов позволяет сохранить большую часть высокочастотных составляющих сигнала, приближающихся к частоте среза. Практический выигрыш от этого заключается в том, что достигается большой запас по точности измерения на каждый вложенный доллар, чем это было возможно ранее. В качестве примера можно рассмотреть сигнал со временем нарастания 100 пс, которое нужно измерить с погрешностью не более 5%. Для этого при гауссовой частотной характеристике осциллограф должен иметь собственную переходную характеристику с временем нарастания 33 пс и полосу пропускания 10,6 ГГц. Осциллограф с максимально плоской частотной характеристикой может обеспечить достаточную для этого точность измерения при полосе пропускания 6 ГГц и времени нарастания переходной характеристики 70 пс.

При максимально плоской частотной характеристике в значительной степени снижаются требования к частоте дискретизации. Чтобы убедиться в этом следует снова вернуться к рисунку 3. Для расширения полосы пропускания цифрового осциллографа, работающего в реальном времени, частота дискретизации должна быть значительно выше частоты среза, определяемой по уровню минус 3 дБ. Это необходимо для того, чтобы частота Найквиста (равная 1/2 частоты дискретизации) переместилась в точку, где эффект наложения сигналов подавляется в достаточной степени. В 8-разрядном осциллографе необходимо подавление сигналов наложения для частоты перегиба и выше по меньшей мере на 55 дБ. При гауссовой характеристике частота среза на уровне минус 3 дБ составляет около 22% от частоты, где достигается подавление на 55 дБ. Поэтому для получения полосы пропускания 6 ГГц частота дискретизации должна быть по крайней мере 55 ГГц. При максимально плоской частотной характеристике отношение частоты дискретизации к полосе обзора не так велико. Например, осциллограф Agilent 54855A имеет полосу пропускания 6 ГГц (расширяемую с помощью цифровой обработки сигналов до 7 ГГц) при частоте дискретизации 20 ГГц. Следовательно, частота Найквиста здесь составляет 10 ГГц. Частотная характеристика фильтра осциллографа 54855А обеспечивает подавление на частоте 10 ГГц более 55 дБ.
В заключение приводятся формулы и методика расчета, которые можно использовать для быстрого определения необходимой полосы пропускания.
Прежде всего следует определить максимальную частоту в спектре сигнала Fmax. Для большинства реальных цифровых сигналов эту частоту можно найти по формуле:
Fmax ~ 0.5/(время нарастания по уровням 10% -90%)
или
Fmax ~ 0.4/(время нарастания по уровням 20% - 80%)

Затем в приведенной ниже таблице нужно найти полосу пропускания, необходимую для обеспечения заданной допустимой погрешности времени нарастания.

Если принять во внимание быстрые темпы внедрения новых и гораздо более высокоскоростных технологий передачи данных, то вложение средств в осциллографы с достаточно широкой полосой пропускания позволит закрыть потребности, связанные с разработкой ряда ближайших проектов. Сегодняшние инвестиции с учетом создания некоторого дополнительного запаса по параметрам помогут впоследствии реально сохранить вложенные деньги.

Майк МакТиг (Mike McTigue),
Agilent Technologies
[email protected]

Когда сигнал проходит вдоль канала связи, его амплитуда уменьшается, поскольку физическая среда сопротивляется потоку электрической или электромагнитной энергии. Этот эффект известен как затухание сигнала. При передаче электрических сигналов некоторые материалы, такие, как медь, являются более эффективными проводниками, чем другие. Однако все проводники содержат примеси, которые сопротивляются движению o образующих электрический ток электронов. Сопротивление проводников вызывает преобразование некоторой части электрической энергии сигнала в тепловую энергию по мере продвижения сигнала по кабелю, что ведет к постоянному снижению уровня электрического сигнала. Затухание сигнала выражается потерей мощности сигнала на единицу длины кабеля, обычно в децибелах на километр (дБ/км).

Рис. 2.5. Затухание сигнала

Для затухания устанавливается предел для максимальной длины канала связи. Это делается для того, чтобы гарантировать, что прибывающий на приемник сигнал обладает достаточной амплитудой для надежного распознавания и корректной интерпретации. Если канал превышает эту максимальную длину, на его протяжении для восстановления приемлемого уровня сигнала должны использоваться усилители или повторители (repeater).

Рис. 2.6. Повторители сигнала

Затухание сигнала увеличивается с ростом частоты. Это вызывает искажение реального сигнала, содержащего диапазон частот. Например, у цифрового сигнала есть очень острый, быстро растущий фронт импульса, создающий высокочастотный компонент. Чем острее (быстрее) подъем, тем больше будет компонент частоты. Это показано на рис. 2.5, где период фронта ослабленных сигналов прогрессивно увеличивается по мере прохождения сигнала по кабелю из-за большего затухания высокочастотных компонент. Эту проблему можно преодолеть использованием специальных усилителей (эквалайзеров), которые усиливают подверженные большему затуханию высокие частоты.

Свет также затухает при прохождений сквозь стекло во многом по тем же причинам. Электромагнитная энергия (свет) поглощается из-за естественного сопротивления стекла.

2.3.3. Полоса пропускания канала

Количество информации, которую канал может передать за данный период времени, определяется его способностью обработать скорость изменения сигнала> то есть его частоту. Аналоговый сигнал меняет частоту от минимальной до максимальной, и их разница составляет ширину спектра частот сигнала. Полоса пропускания (bandwidth) аналогового канала представляет собой разницу между максимальной и минимальной частотами, которые могут быть надежно переданы каналом. Обычно это частоты, на которых сигнал теряет половину своей мощности по сравнению с уровнями частот в середине диапазона или с* уровнями частот на входе канала; эти частоты обозначаются как точки 3 дБ. В последнем случае полоса пропускания известна как полоса пропускания 3 дБ.

Цифровые сигналы составлены из большого набора частотных компонентов, однако получать можно лишь те частоты, которые находятся внутри полосы пропускания канала. Чем больше полоса пропускания канала, тем выше может быть скорость передачи данных и тем более высокочастотные компоненты сигнала могут передаваться, поэтому может быть получено и декодировано более точное представление переданного сигнала

Рис. 2.7. Полоса пропусклния

Рис. 2.8. Влияние полосы пропусклния на цифровые сигналы

Максимальная скорость передачи данных (С) канала может быть определена из его юлосы пропускания с использованием следующей формулы выведенной математиком Найквистом (Nyquist).

C = 2 B log 2 M bps,

где В - полоса пропускания в герцах; М уровней используются для каждого элемента сигнала

В особом случае при использовании лишв двух уровней, "ВКЛЮЧЕНО" и "ВЫКЛЮЧЕНО" (двоичном):

М = 2 и С = 2 B.

В качестве примера: максимальная скорость передачи данных, по Найквисту, для канала PSTN с полосой пропускания 3100 герц для двоичного сигнала будет следующей: 2 х 3100 = 6200 bps. В реальности достижимая скорость передачи данных снижается из-за наличия в канале шума.

2.3.4. Шум

При прохождении сигналов через канал связи атомы и молекулы в среде передачи вибрируют и излучают случайные электромагнитные волны в виде шума. Обычно сила передаваемого сигнала велика по сравнению с шумовым1 сигналом. Однако по мере продвижения и затухания сигнала его уровень может сравняться с уровнем шума. Когда полезный сигнал незначительно превышает фоновый шум, приемник не может отделить данные от шума и возникают ошибки связи.

Важным параметром канала является отношение мощности полученного сигнала (S) к мощности шумового сигнала (N). Отношение S/N называется отношением сигнал/шум и выражается обычно в децибелах, сокращенно дБ.

S/N = 10 log 10 (S/N) дБ,

где S- мощность сигнала в ваттах; N- мощность шума в ваттах.

Высокое значение отношения сигнала к шуму означает, что мощность полезного сигнала высока по сравнению с уровнем шума, что ведет к хорошему качеству восприятия сигнала. Теоретическую максимальную скорость передачи данных для реального канала можно вычислить, используя закон Шеннона - Хартли (Shannon - Hartley).

C = B log 2(1 +S/N) bps,

где С - скорость передачи данных в bps; В - полоса пропускания канала в герцах; S - мощность сигнала в ваттах; N - мощность шума в ваттах.

Из этой формулы можно видеть, что увеличение полосы пропускания или увеличение отношения сигнала к шуму позволяет увеличить скорость передачи данных и что сравнительно небольшое увеличение полосы пропускания эквивалентно гораздо большему увеличению отношения сигнала к шуму.

Каналы цифровой передачи используют широкие полосы пропускания и цифровые повторители или регенераторы для воссоздания сигналов через регулярные интервалы, поддерживая приемлемые отношения сигнала к шуму. Ослабленные сигналы, получаемые регенератором, распознаются, перенастраиваются и пересылаются как почти точные копии исходных цифровых сигналов, как показано на рис. 2.9. В сигнале нет накапливаемого шума даже при передаче на тысячи километров, при условии поддержания приемлемых отношений сигнала к шуму.

» (вверху):
1 - кнопки переключателя программ. Каждая кнопка могла быть настроена на любой метровый или дециметровый канал.
Советский чёрно-белый лампово-полупроводниковый телевизор 1980-х годов (внизу):
2 - рукоятка селектора метровых каналов.
3 - переключатель между «метровым» и «дециметровым» селекторами каналов.
4 - рукоятка плавной настройки дециметровых каналов.
Не каждый советский телевизор комплектовался на заводе селектором дециметровых каналов, хотя возможность самостоятельной установки была. Дело в том, что в СССР телепередачи в дециметровом диапазоне велись только в нескольких крупных городах.

Телевизио́нный кана́л - полоса радиочастот в диапазоне метровых и дециметровых волн (МВ и ДМВ), предназначенная для передачи в сетях эфирного , кабельного или мобильного телевидения :

  • радиосигналов изображения и звукового сопровождения одного аналогового телеканала ;
  • цифровых сервисов в составе одного мультиплекса , как правило - нескольких телеканалов и (или) радиоканалов.

Последнее можно отнести и к спутниковому телевидению. Однако традиционно для него в данном случае используется термин «транспондер », что не совсем точно, так как транспондер - это физическое устройство, а не полоса радиочастот. С другой стороны, диапазоны спутникового телевидения расположены на сверхвысоких частотах , а ширина полосы исчезающе мала по сравнению с абсолютными частотами мультиплексов (транспондеров), которые могут и не иметь стандартных значений границ радиочастот.

Не следует путать радиотехнические средства, обеспечивающие передачу аудиовизуальной информации, с самой этой информацией, которую пользователь может увидеть на экране своего телевизора (новости , концерт , фильм или настроечную таблицу). Собственно полоса радиочастот не является строго телеканалом, наоборот - как аналоговые, так и цифровые стандарты определяют необходимую им ширину радиочастот для одного канала (или мультиплекса), а их границы регламентируются стандартами отдельных стран. Термин телевизионный канал (телеканал , ТВК ) продолжает использоваться и в контексте цифрового вещания, так как для границ мультиплексов в большинстве случаев сохранены и полосы и номера ТВК, соответствующие аналоговому телевещанию.

Использование

Исторически сложилось, что в разных странах используются разные телевизионные стандарты , отличающиеся принципом кодирования сигнала - аналоговое телевидение и цифровое телевидение . Аналоговые стандарты (см. таблицу) в свою очередь отличаются друг от друга значениями:

  • несущих частот изображения и звука,
  • ширины полосы радиочастот целого канала и её составляющих - полос яркости, цветности и звука,
  • частотных границ каналов и их нумерацией,
  • числом строк и полярностью видеосигнала,
  • частот кадровой и строчной развёртки,
  • а также применяемыми стандартами кодирования цвета (NTSC , PAL , SECAM) и другими техническими особенностями.

Цифровые стандарты наследуют из этого списка ширину полосы радиочастот канала (первоначально аналогового) и вместе с ней границы большей части каналов (зависит от страны), несущей частотой можно условно считать середину данной полосы, что строго говоря не верно, ибо спектр цифрового сигнала сложен из множества отдельных элементов и лишь на графическом изображении выглядит как например аналоговый спектр яркости с центром в середине полосы. Цифровые стандарты разработаны европейской группой DVB , есть и стандарты, созданные силами отдельных стран (США , Япония , Китай и Корея). Остальные страны принимают либо наиболее распространённые DVB-стандарты, либо американские ATSC , либо японские ISDB , китайский стандарт принят только Кубой . Во многих странах уже прекращено аналоговое вещание.

Типичная ширина полосы может составлять 1,7; 5; 6; 7; 8 и 10 МГц , чаще используется ширина в 8 МГц. Значение ширины полосы прямо пропорционально количеству передаваемой в спектре информации, а также влияет на помехоустойчивость.

Абонент принимает аналоговые телевизионные сигналы и (или) цифровые мультиплексы либо через эфир (с помощью индивидуальной или коллективной антенны), либо при посредстве кабельных операторов. Эти операторы могут ретранслировать частотные каналы по своим кабельным сетям, изменив при этом номера , занимаемые ими в эфире. Такая же ситуация возможна в системах коллективного телеприёма отдельного жилого дома или гостиниц, санаториев и т. д. В разных населённых пунктах один и тот же аналоговый телеканал может передаваться в эфир на разных частотных каналах, например во Владивостоке российский «Первый канал » передаётся на первом метровом канале, в Хабаровске - на третьем, а в посёлке Хор - на девятом, равно как и общероссийские цифровые мультиплексы «РТРС-1 » и «РТРС-2 » имеют индивидуальную частотную сеть вещания в зависимости от региона страны. В ряде случаев (ввод в строй новых мощностей на телецентре , ремонт телепередающей аппаратуры, изменение контракта между собственником средства массовой информации и передающим телерадиоцентром) вещание может быть продолжено на другом частотном канале.

Некоторые бытовые электронные устройства (например, советские игровые приставки «Видеоспорт-3 », «Электроника Экси Видео 01 » и др), приставки «Dendy », бытовые видеомагнитофоны , домашние компьютеры 1980-х - начала 1990-х годов («БК », «Микро-80 » и др.) могут подключаться к телевизору с помощью антенного коаксиального высокочастотного кабеля . В этих устройствах имеется модулятор высокой частоты одного ТВК, тюнер телевизора может настраивается на его приём ровно также как и на обычный эфирный или кабельный аналоговый частотный канал. Частота канала (номер ТВК), на котором передаётся телевизионный сигнал от устройства к телевизору может быть изменён в настройках этого устройства, чтобы избежать помех, если в населённом пункте уже идут передачи на этой частоте.

Параметры полос телеканалов наиболее распространённых аналоговых систем
Стандарт
разложения
Ширины полос радиочастот, МГц Примечания
Канал
целиком
Только
видео
Разнос несущих
видео и звука
Остаточная
боковая
B 7 5 5,5 0,75 вещание сворачивается, только МВ
D 8 6 6,5 0,75 см. таблицу ниже, только МВ
G 8 5 5,5 0,75
H 8 5 5,5 1,25 вещание сворачивается, только ДМВ
I 8 5,5 5,9996 1,25 вещание свёрнуто
K 8 6 6,5 0,75 см. таблицу ниже, только ДМВ
K" (K1) 8 6 6,5 1,25 вещание свёрнуто
L 8 6 6,5 1,25 вещание свёрнуто
M 6 4,2 4,5 0,75 вещание практически свёрнуто, только Куба и Бразилия
N 6 4,2 4,5 0,75 Аргентина , Парагвай , Уругвай

Стандарты полос телевизионных каналов

В таблице представлены частотные диапазоны и частотные телевизионные каналы, используемые в России и на постсоветском пространстве , а также в бывших социалистических странах. Этот телевизионный стандарт в целом соответствует стандарту OIRT . Стандарты разложения, применявшиеся в большинстве стран-участниц организации «OIRT» - «D» для МВ и «K» для ДМВ , а стандарт кодирования цвета - SECAM , поэтому в качестве наименования данного стандарта чаще встречается обозначение «SECAM-D/K». Впрочем, после распада СССР некоторые телецентры и особенно кабельные операторы передают цвет и в стандарте PAL или даже в PAL+ . После интеграции «OIRT» в организацию «EBU » и с распадом организации «СЭВ » стандарт SECAM постепенно заменялся на PAL и в Восточной Европе . Номера и частоты каналов при этом сохранялись, но в ряде стран произведено перераспределение частотных ресурсов в пользу иных видов связи, отличных от аналогового эфирного телевидения, как в диапазоне ДМВ, так и в МВ.

Необходимо отметить, что кроме собственно стандартов разложения аналогового телевидения (см. таблицу выше), под обозначениями «D» и «K» (и другими) понимают и стандарты границ частотных каналов в соответствующих диапазонах частот, особенно за пределами постсоветского пространства. Тем не менее, система «K» для ДМВ в этом отношении практически идентична системам « », « », « » и «L» с последовательностью каналов начиная с 21-го. А система «D» для МВ более оригинальна, в современном виде (с 1965 года) она представляет собой 12 каналов, последовательность которых соблюдается лишь внутри трёх поддиапазонов (I, II и III). От прежней системы OIR (наименование организации «OIRT» до 1960 года) из 13 каналов в МВ (выпускавшиеся в 1950-е годы советские телевизоры могли принимать от трёх до пяти частотных телевизионных каналов ) сохранились лишь три - современные 1-й, 2-й и 3-й. Таким образом, 1-й и 2-й каналы представляют собой один из старейших в мире ТВ-диапазон I (48,5-66 МГц), 3-й канал дал начало оригинальному ТВ-диапазону II (76-100 МГц), но ТВ-диапазон III имеет близкие аналоги в других системах.

Кроме России, стандарт OIRT (или «SECAM-D/K») используется (или использовался) в следующих странах:

Частоты и номера каналов эфирного и кабельного телевидения. Стандарт OIRT и стандарты России
Номер
ТВ канала
(ТВК)
Частотные границы
канала (полосы), МГц
Аналоговое телевидение Частота для настройки
цифрового телевидения
(середина полосы), МГц
нижняя верхняя Несущая частота
изображения, МГц
Несущая частота
звука, МГц
Метровые волны (МВ)
ТВ-диапазон I (МВ, каналы 1-2)
1 48,5 56,5 49,75 56,25 -
2 58 66 59,25 65,75
Полоса, выделенная для стереофонического радиовещания (диапазон УКВ OIRT)
- 65,9 74 На радиоприёмниках диапазона УКВ OIRT
возможно прослушивание звукового сопровождения 2-го канала.
А на некоторых телеприёмниках - радиопрограмм.
-
ТВ-диапазон II (МВ, каналы 3-5)
3 76 84 77,25 83,75 -
4 84 92 85,25 91,75
5 92 100 93,25 99,75
Полоса, выделенная для стереофонического радиовещания (часть диапазона УКВ CCIR)
- 100 108 На радиоприёмниках диапазона УКВ CCIR (FM-диапазон, 87,5-108 МГц)
возможно прослушивание звукового сопровождения 4-го и 5-го каналов,
с японским FM-диапазоном (76-89,9 МГц) - 3-го канала.
А на некоторых телеприёмниках - FM-радиопрограмм.
Допускается распределение сигналов радиовещания в полосе частот
87,5-100 МГц в кабельных распределительных сетях,
не использующих полосы частот 4-го и 5-го каналов .
-
1-я кабельная полоса (МВ, каналы СК 1-8)
СК 1 110 118 111,25 117,75 114
СК 2 118 126 119,25 125,75 122
СК 3 126 134 127,25 133,75 130
СК 4 134 142 135,25 141,75 138
СК 5 142 150 143,25 149,75 146
СК 6 150 158 151,25 157,75 154
СК 7 158 166 159,25 165,75 162
СК 8 166 174 167,25 173,75 170
ТВ-диапазон III (МВ, каналы 6-12)
6 174 182 175,25 181,75 178
7 182 190 183,25 189,75 186
8 190 198 191,25 197,75 194
9 198 206 199,25 205,75 202
10 206 214 207,25 213,75 210
11 214 222 215,25 221,75 218
12 222 230 223,25 229,75 226
2-я кабельная полоса (МВ, каналы СК 11-19)
СК 11 230 238 231,25 237,75 234
СК 12 238 246 239,25 245,75 242
СК 13 246 254 247,25 253,75 250
СК 14 254 262 255,25 261,75 258
СК 15 262 270 263,25 269,75 266
СК 16 270 278 271,25 277,75 274
СК 17 278 286 279,25 285,75 282
СК 18 286 294 287,25 293,75 290
СК 19 294 302 295,25 301,75 298
Дециметровые волны (ДМВ)
3-я кабельная полоса (диапазон Hyperband , ДМВ, каналы СК 20-40)
СК 20 302 310 303,25 309,75 306
СК 21 310 318 311,25 317,75 314
СК 22 318 326 319,25 325,75 322
СК 23 326 334 327,25 333,75 330
СК 24 334 342 335,25 341,75 338
СК 25 342 350 343,25 349,75 346
СК 26 350 358 351,25 357,75 354
СК 27 358 366 359,25 365,75 362
СК 28 366 374 367,25 373,75 370
СК 29 374 382 375,25 381,75 378
СК 30 382 390 383,25 389,75 386
СК 31 390 398 391,25 397,75 394
СК 32 398 406 399,25 405,75 402
СК 33 406 414 407,25 413,75 410
СК 34 414 422 415,25 421,75 418
СК 35 422 430 423,25 429,75 426
СК 36 430 438 431,25 437,75 434
СК 37 438 446 439,25 445,75 442
СК 38 446 454 447,25 453,75 450
СК 39 454 462 455,25 461,75 458
СК 40 462 470 463,25 469,75 466
ТВ-диапазон IV

Эффективная полоса пропускания цифрового осциллографа определяется не только используемым АЦП, размер памяти также играют важную роль.

По материалам:
BY PHIL STEARNS
Agilent Technologies
Santa Clara, CA
http://www.agilent.com

При выборе осциллографа для конкретных измерений, первым, что большинство из нас рассмотривают, является полоса пропускания, ведь нам необходимо точно знать форму наблюдаемого сигнала. В конце концов, широкая полоса пропускания осциллографа гарантирует нам, что спектральные компоненты будут сохранены и мы сможем наблюдать быстрые изменения сигнала, насколько это возможно. Речь идёт в первую очередь о коротких фронтах сигнала.

Поэтому в названиях осциллографов часто уже содержится информация об их номинальной полосе пропускания, большинство имеют в своём номере модели информацию о полосе пропускания. Однако, эта заявляемая характеристика из спецификации только описывает максимальное значение полосы пропускания входного интерфейса осциллографа. После оцифровки, захвата спектр отображаемого на экране сигнала определяется его частотой дискретизации, которая, в свою очередь, может быть ограничена объёмом памяти осциллографа.

Исследование взаимосвязи между полосой пропускания, частотой дискретизации и объёмом памяти может обеспечить понимание компромисса в выборе характеристик, а также понимание как смягчить их влияние, чтобы сделать измерения более достоверными.

Быстрое знакомство с доктором Найквистом

Теорема Найквиста-Шеннона утверждает, что сигнал может быть восстановлен точно, если:
сигнал имеет ограниченный спектр и частота дискретизации в два раза превышает ширину спектра сигнала.

Если мы можем предположить, что все отсчёты сигнала равномерно распределены во времени, то любой осциллограф должен иметь частоту дискретизации в два раза больше его номинальной полосы пропускания, чтобы избежать деградации спектра в захваченном сигнале.

Однако эта теорема также предполагает наличие фильтра, который не только передает все частотные компоненты ниже верхнего предела частоты полосы пропускания, но и устраняет все частотные составляющие выше этой полосы пропускания (см. рис. 1). Высокопроизводительные осциллографы с аппаратной / программной реализацией фильтрации в состоянии удовлетворить это требование. Но для основной массы осциллографов использовать такие фильтры, как правило, нецелесообразно и нежелательно.

Рис. 1. Идеальной фильтр, дискретизация приближается к теоретическому пределу теоремы Найквиста-Шеннона.

В обычном осциллографе фильтр нижних частот имеет не такую крутую характеристику АЧХ (см. рис. 2). Эти фильтры могут быть реализованы более экономично, и их отклик во временной области более предсказуем. Компромисс в том, что вы должны использовать более консервативные частоты дискретизации, передискретизировать относительно полосы пропускания с кратностью 4x.

Рис. 2. Практические характеристики входного фильтра диктуют использовать более консервативную частоту передискретизации, как правило, с коэффициентом 4x.

Пока мы используем этот вариант с 4х-передискретизацией, номинальная пропускная способность осциллографа сохраняется. Тем не менее, все, что приводит к снижению частоты дискретизации приведет к наложению компонентов спектра ниже номинальной частоты полосы пропускания.

Роль объёма памяти

Объём памяти и частота дискретизации - тесно связанные характеристики. Потому осциллографы имеют фиксированное окно отображения для любого конкретного значения развёртки (секунд на деление, с / дел), имеются несколько задаваемых значений, где время и требуемый объём памяти максимальны. Тем не менее, это более важно для захвата данных (выборки), поэтому для полосы пропускания осциллографа должна использоваться вся память.

Простой расчет может показать, сколько точек данных, необходимых для заполнения экрана осциллографа: Количество точек на осциллограмму = частота дискретизации * t/div * количество делений, где t/div - выбранная скорость развёртки, секунд/деление.

Рассмотрим, для примера, осциллограф с частотой дискретизации 5-Gsample/s и количеством делений временной шкалы 10, развёртка установлена на 100 нс/дел. Тогда число точек на осциллограмму равно 5 х 10 9 точек/с x 100 х 10 9 с/дел х 10 дел, в результате получаем 500 точек.

Пока осциллограф имеет достаточно памяти для заполнения всего экрана, частота дискретизации может оставаться неизменной. Однако, если частота дискретизации слишкои высока, это приведет к тому, что объём данных превысит максимальный объем памяти. При этом частота дискретизации должна быть уменьшена, чтобы заполнить отведенное время.

Как частота дискретизации уменьшается с уменьшением скорости развертки легко показать графически (см. рис. 3). Для двух гипотетических осциллографов с полосой пропускания 500 МГц, осциллограф с большим объемом памяти может поддерживать более высокую частоту дискретизации для большего количества установок. Так почему это имеет значение? Вернемся к нашему анализу Найквиста.

Рис. 3. Частота дискретизации должна снизиться до заполнения памяти объёмом данных, достаточным для отображения (слева). Снижение частоты дискретизации ограничивает эффективность полосы пропускания осциллографа (справа).

Осциллограф 1 использует передискретизацию при максимальной пропускной способности с коэффициентом 8 на всех настройках с/дел выше 500 нс/дел (см. рис. 3а), и в этот момент частота дискретизации начинает падать. Тем не менее, частота дискретизации не падает ниже 2 Gsamples/s (4x выборка), когда наложение спектра (aliasing) становится проблемой. Это происходит при 1 мкс/дел. В тот момент, любое снижение частоты дискретизации приводит к уменьшению эффективной полосы пропускания осциллографа (см. рис. 3б).

Последствия

Приведенный выше анализ приводит нас к трем выводам:
Полоса пропускания ограничена эффективной частотой дискретизации осциллографа. Частота дискретизации может снижаться на более медленных скоростях развёртки с/дел. Увеличение объёма памяти может задержать начало момента снижения частоты дискретизации.

Как это влияет выбор осциллографа и методологии тестирования? Ну, это действительно зависит от сигналов, которые вы собираетесь наблюдать.

Если вы проводите большую часть своего времени с простыми сигналами, как, например, фронты и переходные процессы, легко понять, что для выбора осциллографа необходимо обратить внимание на соответствие развертки осциллографа к спектральному содержанию ваших сигналов - быстрый фронт сигнала требуют быстрых скоростей развертки.

Если вы хотите наблюдать более сложные сигналы, которые сочетают медленные и быстрые события (например, модулированные сигналы), вы должны рассмотреть вопрос о замене осциллографа с малым объёмом памяти (менее 100 отсчетов) на модель с большим объёмом памяти (по крайней мере, 1 млн. отсчетов).

Если вы не можете изменить текущее оборудование, вы можете разбить свой анализ на управляемые шаги. Используйте медленные развёртки с/дел для анализа медленных изменений; затем переходите к более быстрой развёртке, которая характеризуются более высокой полосой пропускания сигнала. Если вы выберете этот путь, вы можете использовать приведенные выше расчеты для построения отношения t/divbandwidth для вашего осциллографа.

Для однократных сигналов, компромисс между пропускной способностью и эффективной частотой дискретизации идентичен, но ментальная модель и последствия немного отличаются. При однократном запуске развёртки вы хотите производить захват сигнала в течении как можно большего периода времени, насколько можете (как требуют ваши измерения) и производить его так быстро, как только вы можете. Высокая частота дискретизации важна для поддержания точности воспроизведения сигнала при увеличении масштаба отображения для подробного анализа отдельных переходов. Это позволит провести точные измерения как для макро, таки и для микро событий за одину процедуру захвата сигнала. Если вы не можете поддерживать высокую частоту дискретизации (полосу пропускания), эти события должны быть измерены в отдельных процедурах захвата сигнала.

Заключение

Хоть информация, представленная здесь должна помочь в понимании значения важных характеристик осциллографов, следует иметь в виду, что она здесь даёт довольно краткое представление о зависимости между полосой пропускания, частотой дискретизации и объёмом памяти. С понятием пропускной способности связано гораздо больше нюансов, такие факторы, как равномерность полосы пропускания и частота среза фильтра заслуживают гораздо большего внимания, чем может быть рассмотренно в рамках краткой статьи.

Чтобы изучить эту тему более подробно, две инструкции по применению имеют особое значение: "Оценка параметров осциллографа: Частота дискретизации против точности дискретизации: Как сделать наиболее точными цифровые измерения (AN-1587)" и "Выбор осциллографа с нужной полосой пропускания для ваших применений (AN-1588)". Обе эти указания по применению можно найти в интернете по адресу http://www.agilent.com, используя функцию поиска по сайту.

Получить дополнительную информацию об осциллографах можно по адресу http://www.electronicproducts.com/testmeasure.asp