Самодельный gps трекер на ардуино. GPS трекер на базе GY-NEO6M своими руками - это просто

Индивидуальные GPS передатчики

Сегодня прогресс идет такими темпами, что устройства, которые раньше были громоздкими, дорогими и узкоспециализированными, очень быстро теряют в размерах, весе и цене, но приобретают множество новых функций.

Так устройства, основанные на GPS технологиях, добрались до карманных гаджетов и прочно там обосновались, даря людям новые возможности. Особенно стоит выделить индивидуальные GPS передатчики.

По сути, это те же самые GPS-трекеры, только рассчитанные на использование не на транспортном средстве, а человеком в повседневной жизни.

В зависимости от модели, в одном корпусе могут быть совмещены несколько различных устройств. В самом простом варианте это просто не большая коробочка без дисплея, которая позволяет контролировать перемещения детей, животных либо каких-то других объектов , на которых закреплена.

Внутри у неё расположен GPS модуль, определяющий координаты на местности, GSM/GPRS модуль, передающий информацию и принимающий управляющие команды, а так же источник питания, обеспечивающий автономную работу в течение длительного времени.

Функциональные возможности GPS передатчиков

По мере роста функциональности, появляются следующие возможности прибора:


Варианты исполнения GPS передатчиков

В зависимости от комплектации, могут значительно отличаться корпуса передатчиков. Различные модели имеют исполнения в виде сотовых телефонов, классических навигаторов, или даже наручных часов.

Красочный дизайн специальных версий и полезные дополнения позволяют детям относиться к данным устройствам не как к «родительским шпионам», а как к модным и практичным гаджетам.

В качестве преимущества, стоит упомянуть тот факт, что многие версии прибора прекрасно обходятся без абонентской платы за услуги специализированных операторов, а всю необходимую информацию отправляют клиенту напрямую через интернет или СМС сообщения, что позволяет достаточно весомо сэкономить на содержании подобного оборудования.

Статьи о GPS-трекерах

В этой статье я покажу как использовать gsm модуль совместно с arduino на примере sim800L. Эта же инструкция вполне подойдет для использования любых других gsm модулей, например, sim900 и т.д., потому что все модули работают примерно по одному и тому же типу — это обмен АТ-командами через порт.

Использование модуля с arduino я покажу на примере SMS-реле, которое можно использовать для управления устройством удаленно, посредством SMS-команд. Это можно применять совместно с автосигнализацией и т.д.

Подключается модуль к Arduino через UART интерфейс программного серийного порта, работающего на 2 и 3 цифровых выводах Arduino nano.

Работа Arduino с GSM модулями

Для питания модуля необходимо напряжение в диапазоне от 3.6В до 4.2В, это значит, что придется использовать дополнительный стабилизатор напряжения, так в Arduino установлен стабилизатор на 3.3 вольта, что не подходит для питания модуля, вторая причина установить дополнительный стабилизатор — GSM модуль является серьезной нагрузкой, так как в нем имеется не слабый передатчик, обеспечивающий стабильную связь с сотовой станцией. Питание для Arduino nano подводится к контакту VIN — это встроенный в Arduino стабилизатор, обеспечивающий работу модуля в широких диапазонах напряжения (6-10В). Модуль реле подключается согласно приведенному тексту программы, к 10 выводу Arduino nano и легко может быть изменен на любой другой, работающий как цифровой выход.

Работает это так: устанавливаем SIM-карту в GSM модуль, включаем питание и отправляем SMS с текстом «1» на номер SIM карты для того чтобы включить наше реле, чтобы отключить отправляем SMS с текстом «0».

#include
SoftwareSerial gprsSerial(2, 3); // установка контактов 2 и 3 для программного порта
int LedPin = 10; // для реле

void setup()
{
gprsSerial.begin(4800);
pinMode(LedPin, OUTPUT);

// настройка приема сообщений

gprsSerial.print(«AT+CMGF=1\r»);
gprsSerial.print(«AT+IFC=1, 1\r»);
delay(500);
gprsSerial.print(«AT+CPBS=\»SM\»\r»);
delay(500); // задержка на обработку команды
gprsSerial.print(«AT+CNMI=1,2,2,1,0\r»);
delay(700);
}

String currStr = «»;
// если эта строка сообщение, то переменная примет значение True
boolean isStringMessage = false;

void loop()
{
if (!gprsSerial.available())
return;

char currSymb = gprsSerial.read();
if (‘\r’ == currSymb) {
if (isStringMessage) {
// если текущая строка - сообщение, то…
if (!currStr.compareTo(«1»)) {
digitalWrite(LedPin, HIGH);
} else if (!currStr.compareTo(«0»)) {
digitalWrite(LedPin, LOW);
}
isStringMessage = false;
} else {
if (currStr.startsWith(«+CMT»)) {
// если текущая строка начинается с «+CMT», то следующая сообщение
isStringMessage = true;
}
}
currStr = «»;
} else if (‘\n’ != currSymb) {
currStr += String(currSymb);
}
}

Видео версия статьи:

Теги: #Arduino, #SIM800L

Ваша оценка:

Товары, использованные в данной статье:

← GPS-логгер на arduino | Управление реле по COM порту →

GSM сканер на RTL-SDR

| Главная | English | Разработка | FAQ |

Основные характеристики сканера

GSM сканер выполняет сканирование нисходящих каналов GSM и отображает информацию об уровне сигнала и принадлежности канала одному из трех основных операторов сотовой связи МТС, Билайн и Мегафон. По результатам работы сканер позволяет сохранить список идентификаторов базовых станций MCC, MNC, LAC и CI для всех сканированных каналов.
GSM сканер может быть использован для оценки уровня GSM сигнала, сравнения качества сигнала разных операторов, оценки радиопокрытия, при принятии решения об установке усилителей сигналов сотовой связи и регулировке их параметров, в образовательных целях и др.
Сканер работает под Windows и использует простой и дешевый приемник — RTL-SDR. Прочитать о RTL-SDR можно на:
RTL-SDR (RTL2832U) and software defined radio news and projects,
RTL-SDR – OsmoSDR,
RTL-SDR по-русски.
Параметрами RTL-SDR и определяются основные характеристики сканера. Безусловно GSM сканер не является заменой нормального измерительного оборудования.
Сканер распространяется бесплатно, без каких либо ограничений на использование.
Текущая версия поддерживает диапазон GSM 900 и не поддерживает GSM 1800. Это определяется тем, что рабочая частота RTL-SDR с тюнером R820T ограничена значением 1760 МГц. Есть надежда что применение экспериментального драйвера RTL-SDR позволит реализовать работу хотя бы в части диапазона 1800 МГц.

Запуск сканера

Последнюю версию сканера можно скачать по ссылке. Просто разархивируйте файл в удобное место и запустите gsmscan.exe.
Предыдущие версии сканера, ссылка на репозиторий с исходниками и другая информация связанная с разработкой находится на странице разработки.
Для работы сканера требуется установка драйверов RTL-SDR, если они еще не были установлены, это удобно сделать с помощью программы Zadig описание процедуры установки.

Использование сканера

Ниже представлен вид окна программы сканера:

По горизонтальной оси откладывается номер канала GSM в виде ARFCN или в МГц, по вертикальной оси уровень сигнала в дБм. Высота линии показывает уровень сигнала.

GSM модуль NEOWAY M590 связь с Ардуино

Если идентификаторы БС были декодированы успешно и они соответствуют идентификаторам тройки основных операторов связи, линии окрашиваются в соответствующие цвета.
Выпадающие списки в верхней части экрана позволяют выбирать SDR приемник, если их подключено несколько, диапазон работы GSM 900 или GSM 1800 и единицы измерения по горизонтальной оси ARFCN или МГц.
Кнопки позволяют сохранить отчет о работе сканера в виде списка декодированных базовых станций, очистить результаты декодирования БС и получить информацию о программе.

Принципы и особенности работы.

В процессе работы программа сканирует рабочий диапазон частот с шагом 2.0 МГц (10 каналов GSM) и оцифровывает сигнал с частотой дискретизации 2.4 МГц. Процесс сканирования состоит из быстрого прохода всего диапазона для измерения мощности сигнала и медленного прохода для декодирования идентификаторов БС.

Один шаг декодирования выполняется после прохода всего диапазона для измерения мощности. Таким образом, в диапазоне GSM 900, уровень сигнала обновляется приблизительно раз в 2 с, а полный проход декодирования занимает порядка 1 мин.
Из-за плохого качества сигнала получаемого с RTL-SDR, вероятность правильного декодирования системной информации (SI) широковещательного управляющего канала (BCCH) БС оказывается не высокой. Флуктуации уровня сигнала в результате много-лучевого распространения так же снижают вероятность декодирования системной информации. По этим причинам, для получения идентификаторов БС необходимо чтобы сканер накапливал информацию в течении времени порядка 10 мин. Но даже в этом случае, далеко не все каналы обеспечивают в данном месте достаточный уровень и качество сигнала для декодирования даже самым идеальным приемником. Кроме этого, не все каналы GSM используются для работы по стандарту GSM, как видно на рисунке выше, каналы 975 — 1000 заняты Мегафоном для работы по стандарту UMTS.
В процессе работы, сканер добавляет системную информацию о новых декодированных каналах в общий массив информации по каналам. Но информация о декодированных ранее каналах не стирается при недекодировании системной информации на данном шаге, и остается в массиве. Для очистки этой информации служит кнопка очистки результатов декодирования БС.
При нажатии на кнопку сохранения отчета, накопленные результаты сохраняются в текстовый файл с названием составленным из названия программы, даты и времени сохранения данных. Ниже для примера приведена часть файла отчета:
Сканер предназначен для работы под Windows 7, 8.1 и 10. работа тестировалась с тремя экземплярами RTL-SDR с тюнером R820T, другие типы тюнеров не тестировались.
Для работы под Windows XP собрана специальная версия программы, работает она в несколько раз медленнее стандартной версии.

Развитие.

Программа сканера поставляется как есть, без каких либо гарантий и ответственности. Если у вас есть разумные идеи как расширить функциональность или улучшить работу сканера мы готовы обсудить возможность их реализации.
Вы можете принять участие в разработке сканера, для этого посетите страницу разработки.
Планируется дальнейшее развитие GSM сканера, возможно с вашим участием.

Добрый день (опционально вечер/ночь).

Сегодня будет обзор на GPS приемник и его применение на практике.


ПРЕДИСЛОВИЕ

В общем, я всегда хотел побаловаться с такого рода устройствами, хотелось иметь конкретно трекер, который пишет пройденный путь, но было одно но, хотелось, чтобы трекер был с дисплеем, я вообще люблю разные дисплеи и стараюсь их прикручивать во все, что только можно, такой вот фетиш.

Обзоров на этот GPS приемник было, из самых обширных, немного - штуки 4, один из них реально был хорош, остальные так, описывали в целом. Сильно много повторяться не буду.

Как обычно предупреждение:

Вся ответственность, а именно самостоятельное проникновение в корпус готового изделия с последующим нарушением его целостности работоспособности, лежит на человеке совершившим это действие.

Внешний вид

Размеры данного модуля не большие 35 х 24 мм, и он сможет найти свое место не только в носимой электронике, но и в RC - аппаратах.

В комплекте идет пассивная антенна:

При желании всегда можно заменить активной или изготовить самому, по этой методике:

На сегодняшний день модуль не является устаревшей моделью, и активно используется, + имеется поддержка производителя .

На рисунке ниже я показал, какие линии куда подключать, что бы GPS определился в компьютере:

Выглядит примерно так:

Затем устанавливаем приложение U-center, ссылку давал выше, и выбираем порт:

По умолчанию общаемся на 9600 бод.

Вот в целом работает, все что поймал в помещении:

Подключение модуля к Arduino

Подготовим программатор для прошивки:

Затем в Нано зашиваем этот скетч:

Дополнительная информация

// ArduinoISP // Copyright © 2008-2011 Randall Bohn // If you require a license, see // http://www.opensource.org/licenses/bsd-license.php // // This sketch turns the Arduino into a AVRISP using the following Arduino pins: // // Pin 10 is used to reset the target microcontroller. // // By default, the hardware SPI pins MISO, MOSI and SCK are used to communicate // with the target. On all Arduinos, these pins can be found // on the ICSP/SPI header: // // MISO °. . 5V (!) Avoid this pin on Due, Zero... // SCK . . MOSI // . . GND // // On some Arduinos (Uno,...), pins MOSI, MISO and SCK are the same pins as // digital pin 11, 12 and 13, respectively. That is why many tutorials instruct // you to hook up the target to these pins. If you find this wiring more // practical, have a define USE_OLD_STYLE_WIRING. This will work even when not // using an Uno. (On an Uno this is not needed). // // Alternatively you can use any other digital pin by configuring // software ("BitBanged") SPI and having appropriate defines for PIN_MOSI, // PIN_MISO and PIN_SCK. // // IMPORTANT: When using an Arduino that is not 5V tolerant (Due, Zero, ...) as // the programmer, make sure to not expose any of the programmer"s pins to 5V. // A simple way to accomplish this is to power the complete system (programmer // and target) at 3V3. // // Put an LED (with resistor) on the following pins: // 9: Heartbeat - shows the programmer is running // 8: Error - Lights up if something goes wrong (use red if that makes sense) // 7: Programming - In communication with the slave // #include "Arduino.h" #undef SERIAL #define PROG_FLICKER true // Configure SPI clock (in Hz). // E.g. for an ATtiny @ 128 kHz: the datasheet states that both the high and low // SPI clock pulse must be > 2 CPU cycles, so take 3 cycles i.e. divide target // f_cpu by 6: // #define SPI_CLOCK (128000/6) // // A clock slow enough for an ATtiny85 @ 1 MHz, is a reasonable default: #define SPI_CLOCK (1000000/6) // Select hardware or software SPI, depending on SPI clock. // Currently only for AVR, for other architectures (Due, Zero,...), hardware SPI // is probably too fast anyway. #if defined(ARDUINO_ARCH_AVR) #if SPI_CLOCK > (F_CPU / 128) #define USE_HARDWARE_SPI #endif #endif // Configure which pins to use: // The standard pin configuration. #ifndef ARDUINO_HOODLOADER2 #define RESET 10 // Use pin 10 to reset the target rather than SS #define LED_HB 9 #define LED_ERR 8 #define LED_PMODE 7 // Uncomment following line to use the old Uno style wiring // (using pin 11, 12 and 13 instead of the SPI header) on Leonardo, Due... // #define USE_OLD_STYLE_WIRING #ifdef USE_OLD_STYLE_WIRING #define PIN_MOSI 11 #define PIN_MISO 12 #define PIN_SCK 13 #endif // HOODLOADER2 means running sketches on the ATmega16U2 serial converter chips // on Uno or Mega boards. We must use pins that are broken out: #else #define RESET 4 #define LED_HB 7 #define LED_ERR 6 #define LED_PMODE 5 #endif // By default, use hardware SPI pins: #ifndef PIN_MOSI #define PIN_MOSI MOSI #endif #ifndef PIN_MISO #define PIN_MISO MISO #endif #ifndef PIN_SCK #define PIN_SCK SCK #endif // Force bitbanged SPI if not using the hardware SPI pins: #if (PIN_MISO != MISO) || (PIN_MOSI != MOSI) || (PIN_SCK != SCK) #undef USE_HARDWARE_SPI #endif // Configure the serial port to use. // // Prefer the USB virtual serial port (aka. native USB port), if the Arduino has one: // - it does not autoreset (except for the magic baud rate of 1200). // - it is more reliable because of USB handshaking. // // Leonardo and similar have an USB virtual serial port: "Serial". // Due and Zero have an USB virtual serial port: "SerialUSB". // // On the Due and Zero, "Serial" can be used too, provided you disable autoreset. // To use "Serial": #define SERIAL Serial #ifdef SERIAL_PORT_USBVIRTUAL #define SERIAL SERIAL_PORT_USBVIRTUAL #else #define SERIAL Serial #endif // Configure the baud rate: #define BAUDRATE 19200 // #define BAUDRATE 115200 // #define BAUDRATE 1000000 #define HWVER 2 #define SWMAJ 1 #define SWMIN 18 // STK Definitions #define STK_OK 0x10 #define STK_FAILED 0x11 #define STK_UNKNOWN 0x12 #define STK_INSYNC 0x14 #define STK_NOSYNC 0x15 #define CRC_EOP 0x20 //ok it is a space... void pulse(int pin, int times); #ifdef USE_HARDWARE_SPI #include "SPI.h" #else #define SPI_MODE0 0x00 class SPISettings { public: // clock is in Hz SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) : clock(clock) { (void) bitOrder; (void) dataMode; }; private: uint32_t clock; friend class BitBangedSPI; }; class BitBangedSPI { public: void begin() { digitalWrite(PIN_SCK, LOW); digitalWrite(PIN_MOSI, LOW); pinMode(PIN_SCK, OUTPUT); pinMode(PIN_MOSI, OUTPUT); pinMode(PIN_MISO, INPUT); } void beginTransaction(SPISettings settings) { pulseWidth = (500000 + settings.clock - 1) / settings.clock; if (pulseWidth == 0) pulseWidth = 1; } void end() {} uint8_t transfer (uint8_t b) { for (unsigned int i = 0; i < 8; ++i) { digitalWrite(PIN_MOSI, (b & 0x80) ? HIGH: LOW); digitalWrite(PIN_SCK, HIGH); delayMicroseconds(pulseWidth); b = (b << 1) | digitalRead(PIN_MISO); digitalWrite(PIN_SCK, LOW); // slow pulse delayMicroseconds(pulseWidth); } return b; } private: unsigned long pulseWidth; // in microseconds }; static BitBangedSPI SPI; #endif void setup() { SERIAL.begin(BAUDRATE); pinMode(LED_PMODE, OUTPUT); pulse(LED_PMODE, 2); pinMode(LED_ERR, OUTPUT); pulse(LED_ERR, 2); pinMode(LED_HB, OUTPUT); pulse(LED_HB, 2); } int error = 0; int pmode = 0; // address for reading and writing, set by "U" command unsigned int here; uint8_t buff; // global block storage #define beget16(addr) (*addr * 256 + *(addr+1)) typedef struct param { uint8_t devicecode; uint8_t revision; uint8_t progtype; uint8_t parmode; uint8_t polling; uint8_t selftimed; uint8_t lockbytes; uint8_t fusebytes; uint8_t flashpoll; uint16_t eeprompoll; uint16_t pagesize; uint16_t eepromsize; uint32_t flashsize; } parameter; parameter param; // this provides a heartbeat on pin 9, so you can tell the software is running. uint8_t hbval = 128; int8_t hbdelta = 8; void heartbeat() { static unsigned long last_time = 0; unsigned long now = millis(); if ((now - last_time) < 40) return; last_time = now; if (hbval > 192) hbdelta = -hbdelta; if (hbval < 32) hbdelta = -hbdelta; hbval += hbdelta; analogWrite(LED_HB, hbval); } static bool rst_active_high; void reset_target(bool reset) { digitalWrite(RESET, ((reset && rst_active_high) || (!reset && !rst_active_high)) ? HIGH: LOW); } void loop(void) { // is pmode active? if (pmode) { digitalWrite(LED_PMODE, HIGH); } else { digitalWrite(LED_PMODE, LOW); } // is there an error? if (error) { digitalWrite(LED_ERR, HIGH); } else { digitalWrite(LED_ERR, LOW); } // light the heartbeat LED heartbeat(); if (SERIAL.available()) { avrisp(); } } uint8_t getch() { while (!SERIAL.available()); return SERIAL.read(); } void fill(int n) { for (int x = 0; x < n; x++) { buff[x] = getch(); } } #define PTIME 30 void pulse(int pin, int times) { do { digitalWrite(pin, HIGH); delay(PTIME); digitalWrite(pin, LOW); delay(PTIME); } while (times--); } void prog_lamp(int state) { if (PROG_FLICKER) { digitalWrite(LED_PMODE, state); } } uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { SPI.transfer(a); SPI.transfer(b); SPI.transfer©; return SPI.transfer(d); } void empty_reply() { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void breply(uint8_t b) { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)b); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void get_version(uint8_t c) { switch © { case 0x80: breply(HWVER); break; case 0x81: breply(SWMAJ); break; case 0x82: breply(SWMIN); break; case 0x93: breply("S"); // serial programmer break; default: breply(0); } } void set_parameters() { // call this after reading parameter packet into buff param.devicecode = buff; param.revision = buff; param.progtype = buff; param.parmode = buff; param.polling = buff; param.selftimed = buff; param.lockbytes = buff; param.fusebytes = buff; param.flashpoll = buff; // ignore buff (= buff) // following are 16 bits (big endian) param.eeprompoll = beget16(&buff); param.pagesize = beget16(&buff); param.eepromsize = beget16(&buff); // 32 bits flashsize (big endian) param.flashsize = buff * 0x01000000 + buff * 0x00010000 + buff * 0x00000100 + buff; // AVR devices have active low reset, AT89Sx are active high rst_active_high = (param.devicecode >= 0xe0); } void start_pmode() { // Reset target before driving PIN_SCK or PIN_MOSI // SPI.begin() will configure SS as output, so SPI master mode is selected. // We have defined RESET as pin 10, which for many Arduinos is not the SS pin. // So we have to configure RESET as output here, // (reset_target() first sets the correct level) reset_target(true); pinMode(RESET, OUTPUT); SPI.begin(); SPI.beginTransaction(SPISettings(SPI_CLOCK, MSBFIRST, SPI_MODE0)); // See AVR datasheets, chapter "SERIAL_PRG Programming Algorithm": // Pulse RESET after PIN_SCK is low: digitalWrite(PIN_SCK, LOW); delay(20); // discharge PIN_SCK, value arbitrarily chosen reset_target(false); // Pulse must be minimum 2 target CPU clock cycles so 100 usec is ok for CPU // speeds above 20 KHz delayMicroseconds(100); reset_target(true); // Send the enable programming command: delay(50); // datasheet: must be > 20 msec spi_transaction(0xAC, 0x53, 0x00, 0x00); pmode = 1; } void end_pmode() { SPI.end(); // We"re about to take the target out of reset so configure SPI pins as input pinMode(PIN_MOSI, INPUT); pinMode(PIN_SCK, INPUT); reset_target(false); pinMode(RESET, INPUT); pmode = 0; } void universal() { uint8_t ch; fill(4); ch = spi_transaction(buff, buff, buff, buff); breply(ch); } void flash(uint8_t hilo, unsigned int addr, uint8_t data) { spi_transaction(0x40 + 8 * hilo, addr >> 8 & 0xFF, addr & 0xFF, data); } void commit(unsigned int addr) { if (PROG_FLICKER) { prog_lamp(LOW); } spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0); if (PROG_FLICKER) { delay(PTIME); prog_lamp(HIGH); } } unsigned int current_page() { if (param.pagesize == 32) { return here & 0xFFFFFFF0; } if (param.pagesize == 64) { return here & 0xFFFFFFE0; } if (param.pagesize == 128) { return here & 0xFFFFFFC0; } if (param.pagesize == 256) { return here & 0xFFFFFF80; } return here; } void write_flash(int length) { fill(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print((char) write_flash_pages(length)); } else { error++; SERIAL.print((char) STK_NOSYNC); } } uint8_t write_flash_pages(int length) { int x = 0; unsigned int page = current_page(); while (x < length) { if (page != current_page()) { commit(page); page = current_page(); } flash(LOW, here, buff); flash(HIGH, here, buff); here++; } commit(page); return STK_OK; } #define EECHUNK (32) uint8_t write_eeprom(unsigned int length) { // here is a word address, get the byte address unsigned int start = here * 2; unsigned int remaining = length; if (length > param.eepromsize) { error++; return STK_FAILED; } while (remaining > EECHUNK) { write_eeprom_chunk(start, EECHUNK); start += EECHUNK; remaining -= EECHUNK; } write_eeprom_chunk(start, remaining); return STK_OK; } // write (length) bytes, (start) is a byte address uint8_t write_eeprom_chunk(unsigned int start, unsigned int length) { // this writes byte-by-byte, page writing may be faster (4 bytes at a time) fill(length); prog_lamp(LOW); for (unsigned int x = 0; x < length; x++) { unsigned int addr = start + x; spi_transaction(0xC0, (addr >> 8) & 0xFF, addr & 0xFF, buff[x]); delay(45); } prog_lamp(HIGH); return STK_OK; } void program_page() { char result = (char) STK_FAILED; unsigned int length = 256 * getch(); length += getch(); char memtype = getch(); // flash memory @here, (length) bytes if (memtype == "F") { write_flash(length); return; } if (memtype == "E") { result = (char)write_eeprom(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print(result); } else { error++; SERIAL.print((char) STK_NOSYNC); } return; } SERIAL.print((char)STK_FAILED); return; } uint8_t flash_read(uint8_t hilo, unsigned int addr) { return spi_transaction(0x20 + hilo * 8, (addr >> 8) & 0xFF, addr & 0xFF, 0); } char flash_read_page(int length) { for (int x = 0; x < length; x += 2) { uint8_t low = flash_read(LOW, here); SERIAL.print((char) low); uint8_t high = flash_read(HIGH, here); SERIAL.print((char) high); here++; } return STK_OK; } char eeprom_read_page(int length) { // here again we have a word address int start = here * 2; for (int x = 0; x < length; x++) { int addr = start + x; uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF); SERIAL.print((char) ee); } return STK_OK; } void read_page() { char result = (char)STK_FAILED; int length = 256 * getch(); length += getch(); char memtype = getch(); if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); if (memtype == "F") result = flash_read_page(length); if (memtype == "E") result = eeprom_read_page(length); SERIAL.print(result); } void read_signature() { if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00); SERIAL.print((char) high); uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00); SERIAL.print((char) middle); uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00); SERIAL.print((char) low); SERIAL.print((char) STK_OK); } ////////////////////////////////////////// ////////////////////////////////////////// //////////////////////////////////// //////////////////////////////////// void avrisp() { uint8_t ch = getch(); switch (ch) { case "0": // signon error = 0; empty_reply(); break; case "1": if (getch() == CRC_EOP) { SERIAL.print((char) STK_INSYNC); SERIAL.print("AVR ISP"); SERIAL.print((char) STK_OK); } else { error++; SERIAL.print((char) STK_NOSYNC); } break; case "A": get_version(getch()); break; case "B": fill(20); set_parameters(); empty_reply(); break; case "E": // extended parameters - ignore for now fill(5); empty_reply(); break; case "P": if (!pmode) start_pmode(); empty_reply(); break; case "U": // set address (word) here = getch(); here += 256 * getch(); empty_reply(); break; case 0x60: //STK_PROG_FLASH getch(); // low addr getch(); // high addr empty_reply(); break; case 0x61: //STK_PROG_DATA getch(); // data empty_reply(); break; case 0x64: //STK_PROG_PAGE program_page(); break; case 0x74: //STK_READ_PAGE "t" read_page(); break; case "V": //0x56 universal(); break; case "Q": //0x51 error = 0; end_pmode(); empty_reply(); break; case 0x75: //STK_READ_SIGN "u" read_signature(); break; // expecting a command, not CRC_EOP // this is how we can get back in sync case CRC_EOP: error++; SERIAL.print((char) STK_NOSYNC); break; // anything else we will return STK_UNKNOWN default: error++; if (CRC_EOP == getch()) SERIAL.print((char)STK_UNKNOWN); else SERIAL.print((char)STK_NOSYNC); } }

После этого выбираем Ваш контроллер Pro Mini, указываем программатор ArduinoISP и шьем контроллер, используя команду Скетч -> Загрузить через программатор и нажимаем кнопку Reset на Pro mini, пойдет прошивка контроллера (у меня проходит только со второй попытки, нужно набраться терпения):

Как выше говорил, я очень люблю ко всяким гаджетам подвязывать дисплеи, ну просто жуть как, поэтому данный «проект» мое желание не обошло стороной.

Что нам для всего этого потребуется:

В общем, собрал весь хлам, который валялся без дела:

1. SD card module, очень огромный, поэтому я старался как можно скорее избавится от него.

2. Дисплей на базе контроллера PCD8544, всем известный нокиа дисплей.

3. Карта памяти на 1Гб, с не популярным стандартом MiniSD, вообще был без идеи куда ее воткнуть, а хочется все пустить в дело, вот и пускай поработает на благо навигации.

4. Потребуется мозг, большой такой мозг Pro Mini на чипе 328P.

Как писал выше, будем шить через Arduino Nano с прошитым в нее загрузчиком.

Вообще я очень старался засунуть весь проект в нано, ну просто очень. Не получается, либо отказываемся от карты памяти, либо от дисплея.

5. Конечно же, сам модуль + антенна, как писал выше можно изготовить самому.

6. Ах да, чуть не забыл, потребуется еще корпус иначе, что за устройство без корпуса.

В качестве корпуса были закуплены, еще раз , но в серебряном виде, на пробу. Скажу так, мне абсолютно не понравился серебряный цвет, черный смотрится лучше.

Когда все комплектующие есть в наличии, можно все это подключить и запрограммировать.

Подключаем к Pro Mini по следующей схеме:

Дисплей:

RST - D6
CE - D7
DC - D5
DIN - D4
CLK - D3
VCC - 5V (опционально в моем случае, в остальных 3.3В)
Light - GND
GND - GND

Подсветка мне была не нужна, и я не стал ее подключать.

CS-D10
MOSI-D11
MISO-D12
SCK-D13
GND - GND
5V - VCC (опционально в моем случае, в некоторых при наличии преобразователя подключаем на 3.3В)

GPS модуль:

RX-D8
TX-D2
GND - GND
VCC-3.3 (3.3 это предел!)

Не забываем подключать антенну на модуль, питание я брал с Нано тк. была подключена для отладки, далее все будет переделано на аккумулятор.

Примерный вид:

Код прост и незамысловат, для использования Вам понадобится, пожалуй . Далее . Остальные являются встроенными. По коду, строка - time*0.000001+5, по сути я привел время в удобоваримый вид и добавил часовой пояс. Можно этого не делать и получать чистые результаты.

Ещё один нюанс по библиотеке дисплея заключается в следующем у дисплея, включая с нулевой строкой, всего влезет 6 строк. Что довольно мало, поэтому нужно сразу решать, какую информацию выводить, что-то придется выводить символами, экономя место. Дисплей перерисовывается каждую секунду, при этом обновляя и записывая информацию, поступающую со спутников.

При ошибке чтения файла или отсутствия доступа до карты SD будет выводиться сообщение SD- , в остальных случаях SD+ .

#include #include #include #include //CS-D10, MOSI-D11, MISO-D12, SCK-D13, GND - GND, 5V - VCC (опционально в моем случае, в некоторых при отсутствии преобразователя подключаем на 3.3В) File GPS_file; TinyGPS gps; SoftwareSerial gpsSerial(2, 8);//RX - 8 pin, TX - 2 pin static PCD8544 lcd; //RST - D6, CE - D7, DC - D5, DIN - D4, CLK - D3, VCC - 5V (опционально, при наличии преобразователя на 3.3В линии), Light - GND, GND - GND bool newdata = false; unsigned long start; long lat, lon; unsigned long time, date; void setup() { lcd.begin(84, 48); gpsSerial.begin(9600); Serial.begin(9600); pinMode(10, OUTPUT); if (!SD.begin(10)){ lcd.setCursor(0, 0); lcd.println("SD-"); return;} lcd.setCursor(0, 0); lcd.println("SD+"); GPS_file = SD.open("GPSLOG.txt", FILE_WRITE); if (GPS_file){ Serial.print("Writing to test.txt..."); GPS_file.print("LATITUDE"); GPS_file.print(","); GPS_file.print("LONGITUDE"); GPS_file.print(","); GPS_file.print("DATE"); GPS_file.print(","); GPS_file.print("TIME"); GPS_file.print(","); GPS_file.print("ALTITUDE"); GPS_file.println(); GPS_file.close(); Serial.println("done."); }else{ Serial.println("error opening test.txt"); } lcd.setCursor(0,3); lcd.print("ALT: "); lcd.setCursor(0,2); lcd.print("SPD: "); lcd.setCursor(0,4); lcd.print("LAT: "); lcd.setCursor(0,5); lcd.print("LON: "); } void loop() { if (millis() - start > 1000){ newdata = readgps(); if (newdata){ start = millis(); gps.get_position(&lat, &lon); gps.get_datetime(&date, &time); lcd.setCursor(50,1); lcd.print(date); lcd.setCursor(55,0); lcd.print(time*0.000001+5); lcd.setCursor(22, 4); lcd.print(lat); lcd.setCursor(22, 5); lcd.print(lon); lcd.setCursor(22, 2); lcd.print(gps.f_speed_kmph()); lcd.setCursor(22, 3); lcd.print(gps.f_altitude()); } } GPS_file = SD.open("GPSLOG.txt", FILE_WRITE); if(GPS_file){ GPS_file.print(lat); GPS_file.print(","); GPS_file.print(lon); GPS_file.print(","); GPS_file.print(date); GPS_file.print(","); GPS_file.print(time*0.000001+5); GPS_file.print(","); GPS_file.print(gps.f_altitude()); GPS_file.println(); GPS_file.close(); }else{ lcd.setCursor(0, 0); lcd.println("SD-"); } } bool readgps(){ while (gpsSerial.available()){ int b = gpsSerial.read(); if("\r" != b){ if (gps.encode(b)) return true;}} return false;}

После прошивки Вы увидите нечто подобное (в скетче вывод даты отредактирован к правому краю под временем):

С расположением элементов можно поиграться, был такой вариант, но понял, что усреднение координат выдает огромную погрешность и отказался.

В качестве элементов питания я использую LI-ion аккумулятор. Покупаю акб для экшн - камер оптом и использую их в своих поделках + ко всему всегда могут пригодиться для экшн - камеры, которой пользуюсь в походах. .

Используя макетную плату, собираем все воедино:

На корпус для карты памяти наклеил кусок изоленты, тк он соприкасается с контактами зарядника для батареи. Карту памяти прошиваем в FAT16.

Потом запускаем и проверяем, не забыв поставить выключатель:

Обработка результатов

Результаты представляются в виде текстового файла:

Разделитель колонок выставляем - запятая:

Далее можно загрузить все это дело в ПО Google Earth Pro, используя вкладку Файл -> Открыть , открываем наш файлик и выбираем столбцы, отвечающие за широту и долготу и получаем похожий трек (тк я был в одном месте, то получил россыпь точек):

Можно выбрать точку и отобразить все количество точек, которые ей соответсвуют:

Итог

В общем логер работает, писать трек можно, с последующим редактированием на карте. Так же в программном обеспечении от гугла, трек можно сохранить в более популярном формате, которые поддерживают другие карты.

Свое любопытство удовлетворил с лихвой.

Из минусов это маленькая антенна, порой холодный старт затягивается до 10 минут (зависит от того, насколько сильна облачность, время суток). Антенну конечно можно заменить, на самодельную, либо докупить, на али довольно много активных антенн.

Спасибо за потраченное время.

Обновление от 22.05.18

1. Заменил корпус и изготовил антенну из представленной мною ссылке. (Уменьшил время холодного старта, быстрее находит спутники, значительно быстрее.)

2. Вынес разъем дебага наружу (поигравшись, буду писать прошивку поинтереснее, выкладывать буду сюда же)

3. Для уменьшения занимаемого места, разобрал дисплей и подпаялся к нему.

Пока вид такой.

Планирую купить +129 Добавить в избранное Обзор понравился +170 +299

Схема проекта:

Привет друзья, у нас с вами над головой летает большое количество разных космических аппаратов. Среди них есть примерно 90 крайне полезных навигационных спутников американской системы GPS, российской ГЛОНАСС, европейской Галилео и китайской БэйДоу. И сегодня мы будем ловить с них сигнал.

Для начала немного теории: Спутниковая система навигации представляет из себя сеть космических аппаратов, которые летают по заранее известным маршрутам точно соблюдая свою орбиту и траекторию или находятся в известной стационарной точке на геостационарной или геосинхронной орбите. Спутники в среднем летают на высоте около 20 тысяч километров, и каждый представляет из себя сверхточные атомные часы, которые непрерывно вещают на всю планету свое текущее время.

Радиосигнал распространяясь со скоростью света доходит до Земли с задержкой от 60 до 90 миллисекунд, это зависит от удаления спутника. Зная точное расположение источника радиосигнала по задержке времени его распространения можно узнать точное расстояние до спутника. И далее по триангуляции расстояний до нескольких известных объектов можно узнать где вы находитесь в пространстве.

Представьте, что этот голубой шарик наша планета. Над ним на высоте 20 тысяч километров летит три спутника. При измерении расстояния до первого вы получите информацию о том, что находитесь где-то на этом круге – пока что это малоинформативно. Сигнал от второго спутника уточнит ваше местоположение до двух точек пересечения без привязки к высоте. Сигнал от третьего навигационного спутника укажет высоту этих точек над поверхностью и формально решит навигационное уравнение, сведя ваше местоположение к двум возможным точкам нахождения. В реальности же одна из этих координат имеет невероятных характеристики и ее отбрасывают, полностью решая задачу. Тоже самое делает сигнал от четвертого спутника – он уже однозначно точно решает навигационное уравнение.

Замер расстояний до каждого последующего спутника повышает точность позиционирования и сегодня она составляет от 1 до 3 метров при стандартной видимости около 10 навигационных спутников.

С теорией разобрались, перейдем к практике. Сейчас отдельно продаются разные навигационные модули. Самые простые и древние поддерживают только сигналы от американской GPS системы наблюдая, в среднем 5-7 спутников. Более продвинутые модули могут принимать сигнал еще и от российской группировки ГЛОНАСС, повышая общее количество наблюдаемых спутников в среднем в два раза. Также в продаже есть модули, совмещенные с компасом, они используются для точной навигации и поддержания курса.

На экране моего телефона видны спутники разных навигационных систем. Кружки это GPS, треугольники — ГЛОНАСС, а звездочки это китайская БэйДоу. Таким образом мой телефон поддерживает три разные навигационные системы и совмещая сигналы от них, повышает точность определения местоположения. Сейчас над моей головой находится 28 спутников, а доступен сигнал только от 7. Т.е. мой телефон уже заранее знает где находится каждый спутник. А отсутствующий сигнал от 21 спутника значит, что они находятся вне зоны прямой видимости. Навигационный сигнал очень слабый, от слова ВАЩЕ, он почти не отражается, его блокирует рельеф местности, здания, крыша автомобиля – любой металл у вас над головой или сбоку. Даже идущий за окном снег мешает хорошему приему.

Для реализации проекта понадобится ряд электронных модулей: программируемая платформа Arduino Nano, OLED экран 128 на 32 точки (он подключается по шине I2C), GPS модуль для подключения по UART, любой литиевый аккумулятор емкостью выше 200 миллиампер, защитно-зарядный модуль для лития и повышающий преобразователь для того чтобы получить 5 вольт. У меня тут три разных типа, подойдет любой. Еще планировал использовать цветной RGB светодиод для индикации состояния, но по ходу проекта отказался от этого.

Подключаем экран к Ардуино и сталкиваемся с первой трудностью. Стандартная библиотека OLED экрана занимает 20 кБ, это 70% памяти микроконтроллера и практически не оставляет места для программы. Ранее я собирал высотомер и столкнулся с тем что любая новая строчка кода приводит к переполнению памяти и зависанию микроконтроллера при работе. Поэтому буду использовать значительно более легкую библиотеку. В ней нет работы с графикой и доступен только вывод текста на OLED экран, а занимает она всего 1 кБ памяти.

Отдельно подключаю GPS модуль к макетной плате и вижу первые навигационные данные – сигнал из космоса пойман и обработан. Теперь делаю вывод информации на экран. Класс! Видит 4 спутника, теперь 3, и снова 4, уже 5! Для лучшего приема GPS модуль висит за окном на проводе.

Во время разработки проекта я использовал GPS модули разных типов. Простые GPS и совмещенные GPS c Глонасс. Пришлось провести ряд многочасовых экспериментов для проверки на стабильность работы. Модули оказались рабочими, а вот с программными библиотеками пришлось повозится. Пробовал несколько разных библиотек, и TinyGPS+ оказалась единственной, которая работала сразу со всеми модулями GPS.

Вообще библиотека занимается разбором протокола NMEA, по-простому парсит данные, которые выплевывает GPS модуль два раза в секунду. Вот так выглядит не обработанный поток данных.

В итоге моя прошивка позволяет подключать практически любой GPS модуль по UART с протоколом передачи данных NMEA. По сути это большинство модулей, у которых есть пины RX и TX. Рекомендую брать именно модуль GPS с Глонасс, он видит больше спутников, поэтому точность у него выше. Ссылки на все комплектующие и модули есть в описании к этому видео.

Макетка показала полную работоспособность системы, теперь можно собирать все в железе. В качестве питания я буду использовать литиевый аккумулятор, он подключатся к защитной плате с зарядкой. На этой плате нижний резистор R3 задает ток зарядки аккумулятора, по умолчанию установлен 1 ампер, это много для маленьких аккумуляторов, поэтому резистор нужно заменить. На экране вы видите табличку с номиналом резисторов под разные токи зарядки. Если ваш аккумулятор имеет емкость 500 миллиампер часов, то нужно выставлять ток заряда не выше этого значения. Т.е. можно поставить 200 или 300 миллиампер, и не превышать 500.

Далее напряжение нужно повысить, экран и GPS модуль питаются от 5 вольт. Это будем делать с помощью повышающего преобразователя напряжения. Такие обычно устанавливаются в повербанки для того чтобы поднять напряжения с 3.7 до 5 вольт. Я буду использовать маленький зеленый модуль, он может выдавать ток до 300 мА и его более чем достаточно для этого проекта.

Доработал прошивку, теперь при загрузке на основном экране отображается текущее точное время со спутников, количество видимых спутников и текущая скорость движения трекера, она скачет потому что есть погрешность определения местоположения. При нажатии на кнопку происходит смена экрана. Тут выводится текущее значение скорости и максимальное значение за период наблюдения. На еще одном экране есть текущее расстояние до нулевой точки, максимально зафиксированное удаление от нее и одометр.

Измеряю размеры всех модулей и пытаюсь расположить их максимально компактно. Но как я не старался, тонкий экран никак не увязывался с широким GPS приемником. Поэтому решил заменил экран на другой OLED 128х64 точки. Так получается эргономичнее и кнопочку можно большую поставить. OLED экраны полностью совместимы и требуют минимальной коррекции кода, поэтому прошивки будут доступны на обе версии устройства с маленьким экраном и с большим.

Схема сборки простая. Нужно подключить экран к шине I2C это пины А4 и А5, gps модуль подключается к программному serial порту на пинах D3 и D4. Кнопка на пин D7. Питание от аккумулятора через защитный модуль тащим на выключатель, далее на повышающий преобразователь, и подключаем на 5 вольт Ардуино.

Для удобного размещения компонент буду использовать зеленую макетную плату 7 на 3 сантиметра. Чтобы экран не висел на разъеме устанавливаю его на пластиковые стойки спейсеры на 5 миллиметров. Между экраном и кнопкой будет находится GPS приемник. С обратной стороны платы будет установлен контроллер Ардуино, аккумулятор и защитная плата. Аккумулятор буду использовать тонкий литий на 350 миллиампер, если не ошибаюсь такие используются в электронных сигаретах, но как я уже сказал можно использовать любой литиевый аккумулятор.

Заново все замеряю, промеряю и готовлю проект корпуса для печати на 3Д принтере. Буквально 15 минут на сайте TinkerCAD и проект готов к печати. Переношу файл на флешке, запускаю и погнали. Время печати составляет около 40 минут, это первый пристрелочный корпус для примерки размещения модулей.

Плата и кнопка влезли на свои места, а вот экрану не хватило буквально миллиметра, мешалась внутренняя стойка. А так все подходит и устанавливается на свои места. Отлично, правлю проект и печатаю финальную версию корпуса в оранжевом цвете. После окончания печати нужно обязательно дать время столу остыть и лишь потом отрывать деталь, тогда лицевая сторона будет ровной и ее не поведет.

Отламываю и зачищаю фиксирующий край пластика. Так как я использовал ABS пластик, он подвержен постобработке ацетоном. Наношу его кисточкой, слои дополнительно склеиваются, а корпус становится прочнее и приобретает глянец.

Плата идеально устанавливается внутрь корпуса, крепления сошлись, кнопка не заедает. С одного торца есть отверстие под разъем Ардуино Нано, а с другой стороны для зарядки аккумулятора. Оно оказалось, немного уже, поэтому расширяю его скальпелем.

У зарядной платы по краям есть выступы, они мешают углубить разъем, стачиваю их надфилем. Теперь плата хорошо занимает свое место.

В общем виде устройство будет иметь следующий вид. Сверху располагается корпус. Под ним будет находится микро выключатель, макетная плата с экраном, GPS модулем и кнопкой. Тут же сбоку находится повышающий преобразователь питания.

Отдельно для выключателя вырезал скальпелем отверстие в корпусе, сверху над кнопкой. Он утоплен в корпус и не будет мешать.

Пора паять. Запаиваю первый контакт экрана на плату, примерка – все правильно и можно запаять остальные три контакта. Теперь кнопка. И обязательно счищаем флюс щеткой. Запаиваю провода на модуль защиты аккумулятора.

При подключении обязательно обращайте внимание на цветность проводов. Из Китая изредка приходят неверная цветность. В данном случае я решил выпаять разъем и запаять провода напрямую для лучшего контакта. Процедура сложная, требует точность и аккуратность при пайке. Дополнительно заливаю контакты термоклеем, это обезопасит дорожки и провод от случайного выдергивания. И сразу запихиваем весь GPS модуль в термоусадку, делать это не обязательно, но дополнительно защитит от механических повреждений и замыкания при монтаже на макетную плату.

Повышающий преобразователь тоже кутаем в термоусадку. Для закрепления модулей использую двухсторонний скотч. При установке платы оказалось, что для проводов не хватает места, поэтому рассверлил отверстия в центре, туда и продену провода питания.

Кстати, рекомендую классную аккумуляторную дрель. Она работает от одного аккумулятора 18650 и позволяет быстро рассверливать подобные отверстия на платах и в корпусах, раньше для такой работы мне приходилось доставать дремель из кейса и подключать его в розетку, а сейчас под рукой всегда есть эта дрель.

Верхняя часть платы собрана, провода продеты и теперь нужно установить выключатель. Для этого откусываем на нем лишние ноги, нужны только две для подачи и прерывания питания. Запаиваем на них провод и как обычно все в термоусадку. Далее можно установить выключатель на свое место и залить термоклеем. Теперь будет удобно включать и выключать трекер.

Устанавливаю плату в корпус и закрепляю на четыре маленьких самореза. Ответные отверстия уже предусмотрены на подставках корпуса. Когда снимал защитную пленку с экрана, обратил внимание на большой зазор между дисплеем и корпусом. Поэтому взял кусок прозрачной упаковки от какой-то электроники, вырезал из нее стекло под размер окошка. И приклеил его на ацетон к пластику корпуса.

Сборку производим по схеме, сложностей и нюансов тут нет. Просто внимательно, плюс к плюсу, минус к минусу. Выключатель подключаем сразу на выход с зарядного модуля. Это позволит отключать всю цепь питания и предотвращать разряд аккумулятора.

После пайки всех проводов на модули, закрываем нижнюю плату синей изолентой. Сверху будет лежать контроллер Ардуино с зарядкой, и без изоляции появляется вероятность что-нибудь замкнуть.

Запаиваю защитный модуль и закрепляю его на своем месте термоклеем.

Лужу контакты аккумулятора и быстро запаиваю на них провод чтобы не перегреть аккумулятор. С одной и, с другой стороны. После этого нужно подключить микро USB кабель и подать питание на защитный модуль, это активирует его работу.

Готово, теперь нужно залить прошивку. Подключаем Ардуино к компьютеру, заходим на страницу проекта, ссылка на него есть в описании видео. Качаем архив, распаковываем файлы, устанавливаем библиотеки, открываем нужную версию прошивки для экрана на 32 или на 64 точки и загружаем ее в контроллер. Все, заработало с первого раза! Данные с GPS прут. Круто!

Устанавливаю контроллер на свое место, включаю автономное питание… иииииииииии.. нифига. Светодиод питания на Ардуино горит, а экран не включился. И вот так случился трындец, причину которого я не знаю до сих пор. У меня ушло несколько часов работы чтобы заставить трекер работать автономно от встроенного аккумулятора.

Сначала я думал, что виноват маленький повышающий преобразователь питания. Но проверка мультиметром показала наличие стабильных 5 вольт. Далее я подключил автономный модуль питания, который у меня остался от другого проекта, он построен на большом повышающем преобразователе – и о чудо, трекер завелся, но завис спустя несколько секунд.

Зарядил на нем аккумулятор и поставил трекер на окно ловить спутники. Через три минуты он словил сигнал от 4 спутников и определил местоположение. Ну что, значит работает и наверно можно собрать? Меняем повышающий преобразователь, видимо мелкий сильно шумит по питанию.

Для этого пришлось полностью разобрать трекер, выпаять все провода и пересобрать его заново. Новый модуль питания будет располагаться в том же месте где и старый, только пришлось убрать одну стойку, чтобы он влез под экран.

Все, провода скрутил в косички чтобы избежать наводок. Иии… эта гадина опять не включилась. Точнее включилась и сразу зависла с артефактами на экране. Столько часов работы и все в пустую. Замена преобразователя не помогла.

Пробовал устанавливать конденсаторы на питание – ничего не помогало. Трекер отказывался работать автономно, и от повышающих преобразователей, и от лабораторного блока питания – зависал или вообще не включался. Но при этом он отлично пахал от USB разъема Arduino.

Методом последовательного отключения удалось выяснить, что виноват в этом OLED экран – но почему, я так и не понял. Решение нашлось внезапно. Во время очередной проверки автономного питания я случайно подал на пин VIN 5 вольт. Замечу что этот пин!не ! предназначен для подачи питания 5 вольт и требует напряжение от 7 до 12 вольт.

Но тем не менее трекер сразу завелся и начал стабильно работать. Т.е. получается маленький стабилизатор не был источником проблемы, она в чем-то другом.

Заодно решил проверить ток потребления. От 5 вольт трекер кушал около 70 миллиампер. А от 4 вольт через повышающий преобразователь получилось около 110 миллиампер. Таким образом моего маленького аккумулятора на 350 миллиампер хватит на три часа автономной работы. И это я еще питание не оптимизировал, можно срезать вечно горящие светодиоды и еще сэкономить батарею.

Трекер стал полностью стабильно работать, оставил его на окне и спустя несколько минут он словил 4 спутника. Отлично

Если вам интересно помочь мне разобраться в причине странного поведения Ардуино, то вот вам вводная:

1 – Трекер работает если его запитать через USB разъем Ардуино.

2 – Трекер зависает и не включается если запитать его через пин Ардуино 5V подав на него напряжение 5 вольт от любого источника питания.

3 – Трекер зависает и не включается если подать на него 7 вольт и более через пин Ардуино VIN.

4 – Трекер работает если его запитать не стандартными 5 вольтами через тот же самый пин VIN.

Готовое устройство представляет из себя универсальный автономный спидометр, дальномер, одометр и спутниковые часы точного времени в одном корпусе.

На главном экране после загрузки сверху отображается текущее время и дата по Гринвичу, вторая строка - это текущая скорость 0.3 километра в час и максимальное значение скорости которое было зафиксировано со времени включения — 26 километров в час. На третьей строке текущее расстояние до нулевой точки 530 метров и максимальное удаление которое было достигнуто с момента включения — 580 метров. На четвертой строке одометр, показывает 923 метра и используемое количество спутников.

Нижняя строка chars – это количество данных принятых с GPS модуля.

При коротком нажатии на кнопку происходит смена отображения экрана, а при длительном удержании трекер запоминает текущее местоположение как нулевую точку отсчета для измерений расстояния. На втором экране отображается текущая и максимальная скорость. Третий экран содержит информацию по расстоянию до нулевой точки. Четвертый экран одометр. Пятый широта и долгота.

Сбросить одометр и максимальные значения можно длительным удержанием кнопки на экране с этими параметрами. Т.е. переходите на одометр и удерживая кнопку нажатой сбрасываете его.

Перейдем к тестированию. Сейчас трекер видит 12 спутников. Выставляю текущую нулевую точку и сбрасываю одометр в ноль. Тоже самое делаю на автомобильном одометре. Проехав 1.2 километра по спидометру автомобиля, я увидел на GPS трекере те же самые 1205 метров. Текущее расстояние до нулевой точки по прямой составляет 0.93 километра. И вот по карте те самые 930 метров, пока все точно.

Решил замерить более длинную дистанцию. Опять сбрасываю показания в нули на трекере и автомобиле. Проехав 8.4 километра, я обнаружил на трекере дистанцию пути меньше – всего 7974 метра. При этом текущее расстояние до нулевой точки составляет 4.930 метров. Проверим по карте, получается очень точно, те же самые 4.930 метров. Непонятно, только почему тогда одометр врет на 400 метров и какой именно одометр врет, на машине или GPS.

Ладно, пора уже напечатать заднюю крышку и будем снова тестировать. Закрываю. Вес законченного устройства получился 55 грамм, много, но не критично – в конце покажу как можно уменьшить.

Приехал на каток и решил замерить скорость хоккеиста. Блин, чехлы ему еще для скорости нужно снять. Получилась лютая скорость, прямо «русская ракета» — 5 километров в час. Пешком ходил, а все потому что потолок на катке фольгой отражающей утеплен для удержания холода. Сигнал от спутников есть, но он не точный.

Давайте проведем последний тест с помощью мобильного телефона. Телефон видит 7 спутников, а трекер 9. Запускаю логгирование и сбрасываю одометр на трекере. Ну.. погнали. Проехав три километра телефон и трекер показывали идентичные значения на одометре. 3017 против 3021 метра – это супер результат, я не ожидал такой точности.

А вот одометр глюканул, аж на целых 12 тысяч километров. Некисло так. Ранее у меня при отладке программы уже проскакивал такой глюк и трекер разом перемещало на 7 тысяч километров. Придя домой я создал в Google точку с нулевой широтой и долготой. Оказалось, она находится в Атлантическом океане, недалеко от побережья Ганы. Замерив расстояние от нее до своего местоположения я и получил те самые 7 тысяч километров. Получается от GPS модуля иногда проскакивают нули по координатам. Это легко можно исправить, добавив всего одно условие в код программы. И более этого глюка при тестах не наблюдалось.

Считаю, что трекер получился афигенный, это мой первый опыт прямой работы с GPS модулями. Зачем он нужен? Такой трекер может выполнять роль автономного спидометра или независимого одометра. Его можно разместить на велосипед, автомобиль, игрушку или квадрокоптер. Также он позволяет измерять расстояние по прямой до заданной точки, значения нулевой хранятся в энергонезависимой памяти. Запоминает максимально достигнутые значения скорости и удаления. Делает это все автономно и не зависит ни от кого кроме спутников. Ну и конечно же это часы точного времени. Мне же он нужен для измерения максимальной скорости и максимального удаления от объектов. Точно, надо еще высоту на экран добавить, чтобы замерять как высоко поднялся!

Поговорим о том, как можно уменьшить вес, проще всего это сделать, собирая трекер на платформе Arduino Pro Mini на 3.3 вольта. Тогда вам не понадобится повышающий преобразователь, вместо него будет маленький линейный стаб на 3.3 вольта, GPS модуль без проблем работает от этого напряжения, а на экране нужно будет обойти стабилизатор питания.

Ну и сразу отвечу на вопрос можно ли добавить GSM модуль и управлять трекером по SMS? Да, можно. Для этого помимо самого модуля еще потребуется добавить в код программы обработку SMS команд и это должен быть отдельный проект.

На этом сегодня, если вам понравилось это видео, то я уверен вы оцените его лайком и поделитесь ссылкой на видос со своими друзьями.

Спасибо за просмотр, всем удачи и до встречи в новых видео! Пока-пока!

GPS-модули позволяют вашему автономному устройству отслеживать свои координаты и параметры перемещения. Такая функциональность важна для всевозможных трекеров, умных ошейников и рюкзаков. В этой статье мы сделали попытку краткого обзора GPS-модулей и программ для работы с GPS на компьютере. Подключение к ардуино рассмотрено на примере наиболее популярного модуля NEO 6.0

Прежде чем приступать к подключению GPS к ардуино, нужно научиться тестировать сам модуль. Для этого нам обязательно понадобится программа, позволяющая показать статус устройства, количество пойманных спутников и другу тестовую информацию. Мы постарались собрать вместе наиболее популярный софт для работы с GPS на компьютере.

U-Center

Программа u-center используется для работы с GNSS-проемниками от фирмы U-Blox. С помощью этого программного обеспечения можно тестировать точность позиционирования, изменять конфигурацию ресивера и проводить общую диагностику, обрабатывать полученные данные и отображать их в режиме реального времени. Координаты приемник получает с помощью GPS, ГЛОНАСС. Полученную информацию можно экспортировать и показывать в картах Google Maps, Google Earth. Программа позволяет создавать двухмерные диаграммы, гистограммы и другие виды графиков. u-center можно использовать при работе с несколькими приемниками.

Возможности программного обеспечения U-Center:

  • Работа с Windows;
  • Чтение NMEA , SiRF данных, UBX;
  • Вывод полученных данных в виде текста и графиков;
  • Запись данных, и воспроизведение;
  • Полное управление модулем GPS;
  • Возможность изменения конфигурации GPS-модуля;
  • Запись новой конфигурации в модуль;
  • Запись конфигурации в файл формата.txt;
  • Обновление прошивки модуля;
  • Возможность холодного, теплого и горячего старта модуля.

Программа позволяет оценивать работоспособность приемника, анализировать его быстродействие и устанавливать его настройки. Помимо U-Center могут использоваться и другие программы, например, Visual GPS, Time Tools GPS Clock и другие.

Visual GPS

Эта программа используется для отображения GPS данных по протоколу NMEA 0183 в графическом виде. Программа позволяет записывать лог GPS данных в файл. Существует два режима работы в программе – в первом Visual GPS связывается с приемником GPS, а во втором Visual GPS считывает показания NMEA из файла. Программа имеет 4 основных окна – Signal Quality (качество сигнала), Navigation (навигация), Survey (исследование), Azimuth and Elevation (азимут и высота).

Time Tools GPS Clock

Эта программа работает на Windows и любых рабочих станциях, она проверяет время со стандартного приемника времени NMEA GPS, который подключен к компьютеру, и позволяет синхронизировать время на ПК. Отображается информация о времени, дате, состоянии GPS, полученная от приемника. Недостатком программы является невозможность высокоточного определения времени, так как GPS-устройства не имеют секундного импульса для последовательного порта компьютера.

GPS TrimbleStudio

Программное обеспечение используется для работы с приемником Copernicus в Windows. Программа отображает принимаемые навигационные данные. Полученные координаты можно отобрать на картах Google Maps, Microsoft Visual Earth. Все установленные настройки приемника можно сохранить в конфигурационном файле

Fugawi

Программа используется для планирования маршрута, GPS навигации в реальном времени. Программа позволяет записывать и сохранять маршруты и путевые точки на картах. Навигация производится как на суше, так и на воде и в воздухе. В программе используются различные виды цифровых карт – топографические карты, стандарты NOAA RNC, отсканированные копии бумажных карт, Fugawi Street Maps.

3D World Map

В этой программе можно увидеть землю в трехмерном виде. Используется как удобный географический справочник, в котором можно узнать информацию 269 странах и тридцати тысячах населенных пунктов, производить измерение между двумя точками, воспроизводить аудиозаписи.

Обзор GPS-модулей для Ардуино

Для работы с Ардуино существует большое количество различных GPS-модулей. С их помощью можно определять точное местоположение (географические координаты, высота над уровнем моря), скорость перемещения, дату, время.

Модуль EM-411. Устройство создано на базе высокопроизводительного чипа SiRF Star III, который обладает низким потреблением энергии. Модуль имеет большой объем памяти для сохранения данных альманаха, поддерживает стандартный протокол NMEA 0183. Время холодного старта составляет около 45 секунд.

VK2828U7G5LF. Этот модуль построен на базе чипа Ublox UBX-G7020-KT. С его помощью можно получать координаты по GPS и ГЛОНАСС. В приемнике имеется встроенная память, в которую можно сохранять настройки. Модуль оснащен встроенной керамической антенной, работает по протоколу NMEA 0183. Напряжение питания модуля 3,3-5В.

SKM53 GPS. Один из самых дешевых модулей, обладающий низким потреблением тока. Время холодного запуска примерно 36 секунд, горячего – 1 секунда. Для позиционирования используются 66 каналов, для слежения 22 канала. В модуле имеется встроенная GPS антенна, устройство обеспечивает высокую производительность навигации при различных условиях видимости.

Neo-6M GPS. Приемник производится компанией u-blox. В этом модуле используются новейшие технологии для получения точной информации о местоположении. Напряжение питания модуля 3-5В. Линейка устройств представлена типами G, Q, M, P, V и T со своими уникальными характеристиками. Время холодного старта около 27 секунд.

locosys 1513. Этот модуль поддерживает работу с GPS, ГЛОНАСС, Galileo, QZSS, SBAS. Базируется на чипе MediaTek MT333, который обладает низким энергопотреблением, высокой чувствительностью и стабильной работой в различных условиях. В приемнике имеется поддержка текстового протокола управления. Время холодного старта примерно 38 секунд.

Arduino GPS модуль GY-NEO6MV2

Модуль использует стандартный протокол NMEA 0183 для связи с GPS приемниками. Приемник представляет собой плату, на которой располагаются модуль NEO-6M-0-001, стабилизатор напряжения, энергонезависимая память, светодиод и аккумулятор.

Технические характеристики модуля:

  • Напряжение питания 3,3-5В;
  • Интерфейс UART 9600 8N1 3.3V;
  • Протокол NMEA;
  • Вес модуля 18 гр.;
  • Наличие EEPROM для сохранения настроек;
  • Наличие встроенной батареи;
  • Возможность подключения антенны к разъему U-FL;
  • Время холодного старта примерно 27 секунд, время горячего старта – 1 секунда;
  • Наличие более 50 каналов позиционирования;
  • Частота обновления 5 Гц;
  • Рабочие температуры от -40С до 85С.

Модуль широко используется для коптеров, определения текущего положения малоподвижных объектов и транспортных средств. Полученные координаты можно загрузить в карты Google Maps, Google Earth и другие.

После холодного старта модуля начинается скачивание альманаха. Время загрузки – не более 15 минут, в зависимости от условий и количество спутников в зоне видимости.

Распиновка: GND (земля), RX (вход для данных UART), TX (выход для данных UART), Vcc – питание от 3,3В до 5 В.

Для подключения потребуются модуль GY-NEO6MV2, плата Ардуино, провода, антенна GPS. Соединение контактов: VCC к 5V, GND к GND, RX к 9 пину на Ардуино, TX к 10 пину. Затем Ардуино нужно подключить к компьютеру через USB.

Для работы потребуется подключить несколько библиотек. SoftwareSerial – требуется для расширения аппаратных функций устройства и обработки задачи последовательной связи. Библиотека TinyGPS используется для преобразования сообщений NMEA в удобный для чтения формат.

Проверка работы через программу U-Center

Как упоминалось выше, модуль производится компанией u-blox, поэтому для настройки приемника используется программа U-Center.

При подключении к UART приемник отправляет сообщения при помощи протокола NMEA раз в секунду. С помощью программы можно настраивать передаваемые сообщения.

Чтобы настроить модуль, нужно подключить его через USB-UART(COM-UART) преобразователь. Настроить подключение можно с помощью меню Receiver-Port . Как только будет установлено соединение, загорится зеленый индикатор. Приемник начнет устанавливать соединения со спутниками, после чего на экране появятся текущие координаты, время и другая информация. Все сообщения появляются в окне Messages. В меню View – Messages можно выбрать сообщения, которые будут передаваться к микроконтроллеру. В зависимости от поставленной задачи, можно уменьшить количество отправляемых сообщений, что увеличит скорость обработки данных и облегчит алгоритм разбора сообщений контроллером.

Если не устанавливается связь со спутником, нужно проверить, подключена ли антенна. Затем нужно проверить напряжение питание, оно должно быть 5В. Если соединение так и не устанавливается, можно поместить модуль к окну или выйти на открытую территорию.

Посмотреть передающиеся данные можно через меню View.

Все сообщения начинаются символом $, следующие за ним символы – идентификаторы сообщения. GP- это глобальная система, следующие 3 буквы показывают, какая информация содержится.

RMC – наименьшая навигационная информация (время, дата, координаты, скорость, направление).

GGA – зафиксированная информация позиционирования. Записаны время, координаты, высота, статус определения местоположения, количество спутников.

Проверка работы через Arduino IDE

Работать с модулем можно также через стандартную среду разработки Arduino IDE. После подключения модуля к плате, нужно загрузить скетч и посмотреть на результат. Если на мониторе появится бессвязный набор знаков, нужно отрегулировать скорость интерфейса Ардуино с компьютером и скорость интерфейса модуля с контроллером.

Скетч для вывода данных о местоположении.

#include #include //подключение необходимых для работы библиотек TinyGPS gps; SoftwareSerial gpsSerial(8, 9); //номера пинов, к которым подключен модуль (RX, TX) bool newdata = false; unsigned long start; long lat, lon; unsigned long time, date; void setup(){ gpsSerial.begin(9600); // установка скорости обмена с приемником Serial.begin(9600); Serial.println("Waiting data of GPS..."); } void loop(){ if (millis() - start > 1000) //установка задержки в одну секунду между обновлением данных { newdata = readgps(); if (newdata) { start = millis(); gps.get_position(&lat, &lon); gps.get_datetime(&date, &time); Serial.print("Lat: "); Serial.print(lat); Serial.print(" Long: "); Serial.print(lon); Serial.print(" Date: "); Serial.print(date); Serial.print(" Time: "); Serial.println(time); }} } // проверка наличия данных bool readgps() { while (gpsSerial.available()) { int b = gpsSerial.read(); //в библиотеке TinyGPS имеется ошибка: не обрабатываются данные с \r и \n if("\r" != b) { if (gps.encode(b)) return true; } } return false; }

После того, как код будет залит, нужно подождать несколько секунд (время холодного старта), чтобы устройство смогло определить местоположение и начать показывать координаты. Как только устройство начнет свою работу, на плате будет мигать светодиод.

В мониторе порта появятся данные широты и долготы. Также будет получено значение текущей даты и времени по Гринвичу. Установить свой часовой пояс можно вручную – это делается в строке Serial.print(static_cast(hour+8));

Заключение

Как видим, для начал работы с GPS не требуется каких-то совсем уж сложных манипуляций. На помощь приходят готовые модули или шилды, взаимодействующие с Arduino через UART. Для облегчения написания скетчей можно использовать готовые библиотеки. Кроме того, любой GPS-модуль можно протестировать без Ардуино, подключив к компьютеру и воспользовавшись специальным софтом. Обзор наиболее популярных программ мы привели в этой статье.

После нескольких экспериментов с ардуиной решил сделать простенький и не очень дорогой GPS-tracker с отправкой координат по GPRS на сервер.
Используется Arduino Mega 2560 (Arduino Uno), SIM900 - GSM/GPRS модуль (для отправки информации на сервер), GPS приёмник SKM53 GPS.

Всё закуплено на ebay.com, в сумме около 1500 р (примерно 500р ардуина, немного меньше - GSM модуль, немного больше - GPS).

GPS приемник

Для начала нужно разобраться с работой с GPS. Выбранный модуль - один из самых дешевых и простых. Тем не менее, производитель обещает наличие батарейки для сохранения данных о спутниках. По даташиту, холодный старт должен занимать 36 секунд, однако, в моих условиях (10 этаж с подоконника, вплотную зданий нет) это заняло аж 20 минут. Следующий старт, однако, уже 2 минуты.

Важный параметр устройств, подключаемых к ардуине - энергопотребление. Если перегрузить преобразователь ардуины, она может сгореть. Для используемого приемника максимальное энергопотребление - 45mA @ 3.3v. Зачем в спецификации указывать силу тока на напряжении, отличном от требуемого (5V), для меня загадка. Тем не менее, 45 mA преобразователь ардуины выдержит.

Подключение
GPS не управляемый, хотя и имеет RX пин. Для чего - неизвестно. Основное, что можно делать с этим приемником - читать данные по протоколу NMEA с TX пина. Уровни - 5V, как раз для ардуины, скорость - 9600 бод. Подключаю VIN в VCC ардуины, GND в GND, TX в RX соответствующего serial. Читаю данные сначала вручную, затем с использованием библиотеки TinyGPS. На удивление, всё читается. После перехода на Uno пришлось использовать SoftwareSerial, и тут начались проблемы - теряется часть символов сообщения. Это не очень критично, так как TinyGPS отсекает невалидные сообщения, но довольно неприятно: о частоте в 1Гц можно забыть.

Небольшое замечание относительно SoftwareSerial: на Uno нет хардверных портов (кроме соединённого с USB Serial), поэтому приходится использовать программный. Так вот, он может принимать данные только на пине, на котором плата поддерживает прерывания. В случае Uno это 2 и 3. Мало того, данные одновременно может получать только один такой порт.

Вот так выглядит «тестовый стенд».

GSM приемник/передатчик


Теперь начинается более интересная часть. GSM модуль - SIM900. Он поддерживает GSM и GPRS. Ни EDGE, ни уж тем более 3G, не поддерживаются. Для передачи данных о координатах это, вероятно, хорошо - не будет задержек и проблем при переключении между режимами, плюс GPRS сейчас есть почти везде. Однако, для каких-то более сложных приложений этого уже может не хватить.

Подключение
Модуль управляется также по последовательному порту, с тем же уровнем - 5V. И здесь нам уже понадобятся и RX, и TX. Модуль - shield, то есть, он устанавливается на ардуину. Причем совместим как с mega, так и с uno. Скорость по умолчанию - 115200.

Собираем на Mega, и тут нас ждет первый неприятный сюрприз: TX пин модуля попадает на 7й пин меги. На 7м пину меги недоступны прерывания, а значит, придется соединить 7й пин, скажем, с 6м, на котором прерывания возможны. Таким образом, потратим один пин ардуины впустую. Ну, для меги это не очень страшно - всё-таки пинов хватает. А вот для Uno это уже сложнее (напоминаю, там всего 2 пина, поддерживающих прерывания - 2 и 3). В качестве решения этой проблемы можно предложить не устанавливать модуль на ардуину, а соединить его проводами. Тогда можно использовать Serial1.

После подключения пытаемся «поговорить» с модулем (не забываем его включить). Выбираем скорость порта - 115200, при этом хорошо, если все встроенные последовательные порты (4 на меге, 1 на uno) и все программные работают на одной скорости. Так можно добиться более устойчивой передачи данных. Почему - не знаю, хотя и догадываюсь.

Итак, пишем примитивный код для проброса данных между последовательными портами, отправляем atz, в ответ тишина. Что такое? А, case sensitive. ATZ, получаем OK. Ура, модуль нас слышит. А не позвонить ли нам ради интереса? ATD +7499… Звонит городской телефон, из ардуины идет дымок, ноутбук вырубается. Сгорел преобразователь Arduino. Было плохой идеей кормить его 19 вольтами, хотя и написано, что он может работать от 6 до 20V, рекомендуют 7-12V. В даташите на GSM модуль нигде не сказано о потребляемой мощности под нагрузкой. Ну что ж, Mega отправляется в склад запчастей. С замиранием сердца включаю ноутбук, получивший +19V по +5V линии от USB. Работает, и даже USB не выгорели. Спасибо Lenovo за защиту.

После выгорания преобразователя я поискал потребляемый ток. Так вот, пиковый - 2А, типичный - 0.5А. Такое явно не под силу преобразователю ардуины. Нужно отдельное питание.

Программирование
Модуль предоставляет широкие возможности передачи данных. Начиная от голосовых вызовов и SMS и заканчивая, собственно, GPRS. Причем для последнего есть возможность выполнить HTTP запрос при помощи AT команд. Придется отправить несколько, но это того стоит: формировать запрос вручную не очень-то хочется. Есть пара нюансов с открытием канала передачи данных по GPRS - помните классические AT+CGDCONT=1,«IP»,«apn»? Так вот, тут то же самое нужно, но слегка хитрее.

Для получения страницы по определенному URL нужно послать следующие команды:
AT+SAPBR=1,1 //Открыть несущую (Carrier) AT+SAPBR=3,1,"CONTYPE","GPRS" //тип подключения - GPRS AT+SAPBR=3,1,"APN","internet" //APN, для Мегафона - internet AT+HTTPINIT //Инициализировать HTTP AT+HTTPPARA="CID",1 //Carrier ID для использования. AT+HTTPPARA="URL","http://www.example.com/GpsTracking/record.php?Lat=%ld&Lng=%ld" //Собственно URL, после sprintf с координатами AT+HTTPACTION=0 //Запросить данные методом GET //дождаться ответа AT+HTTPTERM //остановить HTTP

В результате, при наличии соединения, получим ответ от сервера. То есть, фактически, мы уже умеем отправлять данные о координатах, если сервер принимает их по GET.

Питание
Поскольку питать GSM модуль от преобразователя Arduino, как я выяснил, плохая идея, было решено купить преобразователь 12v->5v, 3A, на том же ebay. Однако, модулю не нравится питание в 5V. Идем на хак: подключаем 5V в пин, с которого приходит 5V от ардуины. Тогда встроенный преобразователь модуля (существенно мощнее преобразователя ардуины, MIC 29302WU) сделает из 5V то, что нужно модулю.

Сервер

Сервер написал примитивный - хранение координат и рисование на Яндекс.картах. В дальнейшем возможно добавление разных фич, включая поддержку многих пользователей, статус «на охране/не на охране», состояние систем автомобиля (зажигание, фары и пр.), возможно даже управление системами автомобиля. Конечно, с соответствующей поддержкой трекера, плавно превращающегося в полновесную сигнализацию.

Полевые испытания

Вот так выглядит собранный девайс, без корпуса:

После установки преобразователя питания и укладывания в корпус от дохлого DSL модема система выглядит так:

Припаивал провода, вынул несколько контактов из колодок ардуины. Выглядят так:

Подключил 12V в машине, проехался по Москве, получил трек:


Точки трека достаточно далеко друг от друга. Причина в том, что отправка данных по GPRS занимает относительно много времени, и в это время координаты не считываются. Это явная ошибка программирования. Лечится во-первых, отправкой сразу пачки координат со временем, во-вторых, асинхронной работой с GPRS модулем.

Время поиска спутников на пассажирском сидении автомобиля - пара минут.

Выводы

Создание GPS трекера на ардуино своими руками возможно, хотя и не является тривиальной задачей. Главный вопрос сейчас - как спрятать устройство в машине так, чтобы оно не подвергалось воздействиям вредных факторов (вода, температура), не было закрыто металлом (GPS и GPRS будут экранироваться) и не было особенно заметно. Пока просто лежит в салоне и подключается к гнезду прикуривателя.

Ну и ещё нужно поправить код для более плавного трека, хотя основную задачу трекер и так выполняет.

Использованные устройства

  • Arduino Mega 2560
  • Arduino Uno
  • GPS SkyLab SKM53
  • SIM900 based GSM/GPRS Shield
  • DC-DC 12v->5v 3A converter